
Automatic assessment of assignments for Android
application programming courses

Matej Madeja, Jaroslav Porubän
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics
Technical University of Košice

Letná 9, 042 00 Košice, Slovakia

Abstract—This paper presents a solution of creating a testing
environment for Android applications in programming courses.
Appropriate testing methods and suggestions for the testing envi-
ronment are consulted by the authors with a mobile application
development company. The paper also analyzes basic student
mistakes, looks for solutions to their detection by automated
testing, and suggests appropriate test tools on their basis. At
the same time, the paper contains an assessment and testing
experience for particular tools. In addition, it compares the
performance of emulator and real device tests, and the proposed
tools are partially tested in particular course.

I. INTRODUCTION

Mary Meeker’s report [1] from May 2017 shows that
on average American adult spent 3.1 hours per day on a
mobile device in 2016 and this number is still increasing. The
report also points to the fact that since 2011 Android is the
most used mobile operating system and from April 2017 has
the major market share among all operating systems in the
world [2]. Due to the above popularity a research [3] with
400+ IT professionals has been conducted and 76% of them
stated they develop native Android applications and companies
in which they are employed produce mostly applications for
Android platform. This is the reason why MOOC (massive
open online course) are so popular in this business (see [4],
[5], [6]).

Many IT companies in the area of our university demand
experienced programmers [7]. Responding to this situation,
our university launched the course Application Development
for Smart Devices in 2015 with a major focus on the Android
platform. One of the inconvenient tasks in programming
courses is to evaluate the students’ assignments. In the stan-
dard procedure, the teacher must run each program, enter test
data and evaluate the correctness of the solution. As the course
is usually attended by tens or hundreds of students, therefore,
the evaluation of the assignments is very time-consuming.

Until today 2 runs of the course were conducted, where the
assignments were evaluated in a typical way - by the teacher.
It was clear that it is not possible to evaluate the students’
solutions properly and objectively. There is no way to test
all possible inputs, so the question arises: How to test such
applications? Furthermore, when assignment is submitted by
a student, it is often seen that the student did not do the job by
himself. In the case of typical evaluation of assignment is this
fact really difficult to prove. Automated testing can help us

solve the problem of student’s assignment originality through
an automatic plagiarism detection (more in [8] and [9]). Test-
driven development (students create implementation according
to tests) also shows that it is beneficial for the quality of
programs [10], so automatic student’s solution testing should
also improve their quality of program functionality (probably
source code, too).

Related research, with focus on related surveys of mobile
application testing and teaching, is presented in Section II.
Later in Section III we briefly describe an application for
which testing tools will be suggested. In Section IV we analyse
the most common mistakes of students, Section V is dedicated
to the design of the testing environment and partial results are
described in Section VI. Expectations and plans for the future
are discussed in Section VII and conclusions in Section VIII.

II. RELATED WORK

Testing mobile applications is common, but not with a
focus on automatic assessment of assignments in programming
courses. We first searched for existing automated testing
solutions for students’ assignments in MOOC for Android pro-
gramming, but none of the courses found provide assessment
of student assignments by automated testing. These courses
only deal with application development itself and mostly rely
on manual app testing (either by teachers or directly by student
in his or her own interest). Although some courses contain
automated tests development in the curriculum (e.g. [11],
[12], [13]), but again, none of the courses validate students’
solutions by automated system.

Unfortunately, we did not find any research that addresses
the same issue. We also sought inspiration at prestigious
universities such as Stanford University, MIT1, or Harvard
University, but there was nothing to suggest from the general
information that they use automated tests in similar courses
and we have no access to their internal system. Nevertheless,
there are a number of practical tools that could be explored in
terms of target use.

Evidence that the topic of testing (of mobile apps) is gener-
ally up to date is that many developers write about it on their
blogs and business pages. Already in 2007, Pecinovský [14]
claimed that students should be taught by the step-by-step

1Massachusetts Institute of Technology

M. Madeja and J. Porubän · Automatic assessment of assignments for Android application programming courses

978-1-5386-0889-0/17/$31.00 c�2017 IEEE – 232 –

coding method. Ten years ago, in 2017 DZone team issued
a guide called Automated Testing [15] in which they claim
that there is no longer any other way to develop software
only through Continuous Delivery or Integration. Automated
testing is essential to DevOps and Continuous Delivery and in
order to integrate continuous testing effectively into a DevOps
toolchain, the following essential features are key to evaluating
an automated testing platform:

• Support for a variety of languages, tools, and frameworks.
• Cloud testing.
• The ability to scale rapidly.
• Highly automated.
• Security.
Of the over 400 IT professionals questioned in DZone’s

research, most said they generally use integration, component
or performance testing in Continuous Delivery. Furthermore,
Sauce Labs issued ebook Mobile app testing: Main challenges,
different approaches, one solution [16] in 2017 in which it
mentions that the biggest challenges for automated testing
applications are:

• time saving,
• cost reduction,
• repeatability of tests,
• increased coverage of app features,
• re-usability.
Nevertheless, they (and other researches, e.g. [17], [18])

claim that manual testing for mobile apps is still unnecessary
for some device-specifc function, such as location data or
other environmental sensor data. The ebook also provides an
overview of testing tools and solutions for testing infrastruc-
ture. Since Android is the most popular mobile OS (2011)[2],
many other researches for automated testing has been done,
such as [19], [20], [21].

In 2016 Wilcox described in paper Testing Strategies for
Automated Grading of Student Programs [22] a set of strate-
gies for testing students’ programs that are more effective than
regression testing at providing detailed and relevant feedback
to students. In addition, he discussed some of the issues that
arise in the context of automated grading and their solutions,
such as grading performance, non-terminating programs and
security issues. In recent years there are many other papers,
e.g. [23], [24], [25], in which authors look at the automatic
assessment of assignments from different perspectives.

III. APPLICATION MAKACS

In the first two runs of the course Application Development
for Smart Devices (2015, 2016), the main task was to create
a sports monitoring and tracking application called Makacs.
The implementation of this application was designed to bring
the student into many topics in the development of Android
applications. The application had the following requirements:

• min. 5 activities, of which at least 1 will include calorie
counting,

• min. 1 service (recommended for counters - duration,
pace, distance, calories),

• min. 1 broadcast receiver,
• min. 1 activity with own list implementation,
• data persistence with SQLite2,
• use of min. 1 sensor,
• communication with an external web service through

the API,
• min. 2 languages variants,
• min. 1 custom extension.
The app have to be targeted for Android devices with API

19+ and did not have any other implementation restrictions,
it only had to meet the requirements and features had to be
realistically usable. The creativity and the uniqueness of the
implementation were left to the student, while the originality
of the solution was assessed, of course, by teacher’s subjective
opinion. Because we have decided to find a solution for
automatic assessment of students’ assignments students will
have to be restricted to a greater extent (due to the testing
environment), which is a risk that students will be less creative.

IV. MOST COMMON STUDENTS’ MISTAKES

Based on the Section II, we conclude that there are many
solutions and insights into test systems (or environments) in
the learning process, but none of mentioned is used to test
mobile applications. Our first question, then, was: What to test
in student solutions? In generally the most common Android
app failures are the following [26]:

1) Application failure when installing.
2) Application crash during execution.
3) Problems with scaling or deploying elements on the

screen.
4) Non-responding application from unavailable sources.
5) Problems of viewing content in landscape or portrait

mode.
These were all common issues for apps that people hate

the most. Practical solutions in Section II show mobile ap-
plications are tested, but the testing of students’ programs
may lead to unique situations which, in practice, do not need
to be treated to such an extent. Due to the possibility of
occurrence such unique situations, we have been consulting
the most often mistakes of new Android app developers with
mobile development IT company Wirecard. After collecting
the recommendations, we first selected 4 random student apps
from the course in 2015 and 2016 and tested them manually.
Selected applications have encountered issues such as navi-
gation problems, data loss on activity restart (device rotation
or change of system language), and some logical issues (such
as device uptime dependency for counting duration of sport
activity).

Since app errors were approximately distributed in the same
number, we decided to test another 4 apps to get more accurate
results. After trying them some new issues appeared such as
the inability to install the app and forgotten service at activity
restart, caused by change of system language. In generally,
other issues were only repeated. Because we wanted to make

2https://www.sqlite.org/

2017 IEEE 14th International Scientific Conference on Informatics

– 233 –

TABLE I
MOST COMMON STUDENT’S ISSUES IN MOBILE DEVELOPMENT.

Issue Failed Applications
Navigation & UX 7
Data loss on activity restart (e.g. device rotation) 6
Logical problems (e.g. usage of device
variable data) 3
Unable to start or install app 2
Forgotten services at activity restart 1

sure we will not find other issues yet, we tried to test two
more apps where there was no new issue found. Together, 10
applications were tested and the test results are shown in the
Table I.

Manual testing was carried out on 2 facilities:
1) Nexus 5, API 25, Android 7.1.1, emulator.
2) Prestigio 5453 DUO, API 19, Android 4.4.2, real device.
Based on these results, we would like to concentrate mainly

on these issues in test cases for our automated testing envi-
ronment.

V. TESTING ENVIRONMENT

Now we know the most common mistakes of students and
applications and the next question arise: How we can build a
test environment to detect these issues/errors? The differences
between testing of desktop programs and mobile applica-
tions, as well as problems arising from the testing of mobile
applications, are described in more detail in Wasserman’s
article Software engineering issues for mobile application
development [27]. Some of these issues and new problems
found by us are discussed below.

A. Static testing
The plan for the course curriculum is to have 4 deadlines to

submit partial assignment solution during the semester, which
will be tested in testing environment. At the beginning of
the course it is a big problem to motivate students to work.
Lectures compared to seminars are usually not at the same
time level, meaning that students often lack the theoretical
knowledge to start programming. However, when designing
mobile applications, students can design a UI for their appli-
cation and become familiar with UI components in the IDE,
where the work rests solely on editing XML documents.

We have devised the task at the beginning seminars of the
course, which will be able to test the testing environment.
We have created a task where the students have to create
their own application design and prepare it in IDE. Created
(or generated) XML files can then be uploaded and the test
platform can check them. The seminar documents describe
exactly what elements must contain specific activity resource
file (file defining UI elements) and what identifiers must be
defined in it. The test system then tests only the uniqueness of
the identifiers for every activity file and whether the identifier
is associated with the correct element. This automated test
layer (we call it xmlchecker) has a static character (static tests)

and requires an exact directory structure with resource files. On
the other hand, in order to check whether the students actually
created the real-world design of the application, we require
that screens of activities be sent and then the teacher check
them manually (so that identifiers can not be fake-generated
and sent for evaluation). This type of manual checking is not
very time-consuming and we have judged it to be sufficient.

B. Test pyramid and tools selection
The other 3 submissions contain, in addition to XML

checks, real test of the functionality of the students’ source
code, so in the following testing we will use several tools.
The question arises how the test structure should look like.
Typically, test cases are divided into several layers. For An-
droid apps, the following test layers are common [26]:

• unit tests,
• integration tests,
• operational tests (also called functional or acceptation),
• system tests.
In our case, we chose to use the concept of the test

pyramid [28]. The concept includes the following 3 tiers:
• unit tests,
• integration tests,
• UI tests (or system tests).
When testing student assignments we do not need a separate

layer for operational tests, because they will be included in
UI tests (according to existing testing tools). The test pyramid
concept says any automated testing strategy should have more
low-level unit tests than high-level UI tests. From a viewpoint
of the complexity of performing tests, unit tests are the easiest
and fastest, on the contrary, performing UI tests takes a
relatively long time. By using these tiers in our test platform,
where hundreds of applications are tested and the idea of this
concept is preserved, we can accelerate the testing process
and increase test reliability (by testing the same or similar
functionality by various tools from various tiers).

For listed test tiers of test pyramid we compared the various
open-source test tools so that we can test the most functionality
of student applications automated. We also consulted with
Wirecard company. For unit testing, Google recommend to use
JUnit with Mockito [29] tool to create mock objects (needed
for tests where application context is needed). The purpose of
unit test is to isolate the smallest source code units and check,
even in isolation, they work correctly. In Android applications
are often even the smallest tasks depended on the context of
the app, in which case Mockito can help us.

For integration tests, Wirecard advised us to use Robolec-
tric3 framework with whom they had a wealth of experience.
Due to the close offer of similar tools, we have not found a
suitable competitor, so we have decided to use this tool.

As for the last layer of UX testing, choosing a test tool
was not as simple as the previous ones. Because there is a
lot of UI testing tools and they overtake each other in their
features, we have decided to do our own comparison [30]

3http://robolectric.org/

M. Madeja and J. Porubän · Automatic assessment of assignments for Android application programming courses

– 234 –

of these tools in 2017. We have looked at this tools from
a practical point of view, and in particular from the point
of view of their capability to test. The most popular tools
were Appium4, Robotium5 and Espresso6. Though, the most
important indicator for us was their ability to cover the widest
possible range of different test cases. We looked at factors like
app support type (native, hybrid), context (device, application),
IDE intergration, support of OS vendor, emulator vs. real
device testing, etc. The best tools from this point of view were
Espresso, Appium and Robotium. Espresso has the best overall
score, so we decided to use it in our solution. It has the ability
to record test cases, which greatly facilitates the creation of
tests. In the UI tests, we also decided to use the Monkey7 tool
to perform stress tests (different and fast gestures above the
app UI).

C. Writing tests

Because the proposal was not yet implemented in the course,
we created a sample Makacs application that we experimented
with. The goal of the test pyramid is appropriate for the assess-
ment of student’s assignments because unit tests could be done
very quickly. First we started writing unit tests to get them
as much as possible. In the sample app proposal, a method
of calculating calories, change the units of distance (km, mi),
weight (kg, lb), etc., was precisely defined. Nevertheless, after
a short while, we found out that we were actually tested
everything possible. Together, 6 different unit tests were made
with a size of 5-16 lines. And there was a problem because
the notion that UI tests would be even smaller was unrealistic.
Nevertheless, we continued the chosen concept and tools.

Some tests need to be developed in conjunction with the
Android SDK, but we do not want to deploy the application to
virtual or real device, most often because it is time-consuming.
In that case, we used the Robolectric framework, as a part
of integration tests, that mocks the Android SDK and thus
eliminates the RuntimeException exceptions resulting
from the empty, so-called ”stub” implementation of methods.
Tests are running directly in JVM, so we did not need a
virtual or real device yet. This tool is actually a headless UI
test framework (possible to call action on UI element). When
writing tests, we found that UI headless testing errors were
detected, pointing to some problems in the test framework.
We found out that problems occur with every new version of
the Android SDK when a new implementation of stub methods
is needed (mocking of Android SDK). Therefore, it is not a full
replacement for UI testing tools because UI testing tools do
not have such dependencies. The best choice is a combination
of both approaches (headless and classic UI testing). However,
this headless UI test has not been reliable due to the various
UI elements in the various Android APIs and the resulting
conflicts.

4http://appium.io/
5https://robotium.com/
6https://developer.android.com/training/testing/espresso/
7https://developer.android.com/studio/test/monkey.html

A great feature of Robotium was ability to automatically
clear the test environment for each test (such as app settings).
Problems, however, occurred when running multiple database
access across tests because tests fell due to singleton im-
plementation of the DatabaseOpenHelper class (due to
usage ORMLite8). After each test performed, it is necessary
to release the singleton manually.

At the same time, question arose how to test intents of
individual activities or starting/stopping app services. From the
student application, the desired action (new activity, system
application request, etc.) is expected to be executed after
clicking on a specific button (element ID). Robotium provides
a great and simple solution for tracking intentions. Likewise,
for services, it provides a stack of all existing services in
the application. Implementation is more complicated during
testing, because it is always necessary to erase the stack to
test a particular service. Together, 11 tests for the Robotium
tool were performed in a range of 2-10 rows. All unit and
integration tests are able to run using the gradle9 tool.

As part of the integration tests, we knew that after a specific
action the service with that name started or stopped. However,
we was not able to test the functionality of the service,
which was a major part of the Makacs logic (calorie counting,
distance, etc.). Despite the fact that Robolectic allow testing
of service functionality, the solution was hard to implement.
We found the AndroidJUnit410 tool, which is much easier to
implement using a binder, on the other hand this tool needs an
Android device (virtual or real). Together we created 6 tests
for the main service of the 24-44 line size.

As the last and highest layer of test environment was UI
testing. Espresso is a young test framework, which is also
felt by the developer because the writing of the tests is very
intuitive. Even general tests (such as navigation) can be created
using a test recorder, which greatly accelerates the creation of
tests. The only downside of recording is that it does not look
for component identifiers but for their texts and order in a
particular activity. This approach is not accurate, so you need
to set the identifiers manually. However, it’s faster than writing
all tests manually.

The problem occurred when running multiple tests at once.
Espresso remembers the status of the application’s database
as tests run on a specific device. This is undesirable in some
cases (especially when modeling specific use case, e.g. data
recovery from database of crashed app), so it is necessary to
delete the database manually in these cases. Tests are triggered
at random, so it is necessary to individually check before each
test whether the application is in the required state to start
particular test.

As part of the UI testing, we used the stress testing tool
Monkey, which runs random 10,000 random gestures over each
student solution to get the application into an unexpected error.

8http://ormlite.com/
9https://gradle.org/
10https://developer.android.com/training/testing/unit-testing/instrumented-

unit-tests.html

2017 IEEE 14th International Scientific Conference on Informatics

– 235 –

Fig. 1. Tiers of proposed testing environment.

Figure 1 shows the actual proposed structure of the test
environment. As we can see, the testing enviroment in terms
of the number of tests is the opposite of the test pyramid
concept. This is due to the fact that if we do not want to
limit the students’ solution to a large extent in the assessment
of students’ assignments, we need to focus on testing that is
not dependent on implementation details (at most IDs of UI
components). We have also added static tests to the test process
for tasks that a student can accomplish without the need of
programming on a given platform. This result does not say
that the concept of the test pyramid is poorly designed, but
for the testing of students’ assignments, in our case, we had
a different character from the view of tests number.

VI. PARTIAL EXPERIMENTAL RESULTS

All these suggestions were prepared for the fall 2017
semester of the course. In order to know the assumption that
the testing environment is capable of evaluating assignments,
we performed a number of possible tests on a random sample.
Some results of manual testing have been already described
in Section IV, because based on these results, we focused on
selecting test tools and implementing particular test cases.

From the proposed test tools, student solutions from 2015
and 2016 could be tested only by stress testing by the Monkey
tool, which is not dependent on the specific implementation
of the solution. We tested 10 randomly selected applications
that were approved by manual teacher testing, with 50% of
testing applications failing. In the test 10,000 random gestures
were used over the application, and the most common failures
were NullPointerException, RuntimeException
and SQLException. These results indicate that Monkey has
demonstrated the imperfection of manual testing and greatly
enhances the objectivity of evaluating assignments.

In the typical testing process (companies), a few, mostly
tens of applications are tested. However, in our case, we will
test hundreds of the same applications several times a day,
which can be time-consuming to perform. That’s why we’ve
run tests on the sample Makacs app to find out how long it
takes to perform all the tests.

We’ve run tests on 3 real devices and 3 virtual devices (real
device copies) where we tested sample app for 71 created
tests. On virtual devices, we used Intel x86 Android system

TABLE II
EXECUTION SPEED OF 71 TESTS ON DIFFERENT DEVICES IN 10

MEASUREMENTS.

Device DT Best Time Avg. Time Worst Time
Nexus 5, API 25,
Android 7.1.1

VD 5 min 53 s 6 min 32 s 7 min 2 s
RD 1 min 58 s 2 min 30 s 2 min 54 s

Prestigio 5453 DUO,
API 19, Android 4.4

VD 2 min 12 s 2 min 52 s 4 min 1 s
RD 2 min 23 s 2 min 59 s 3 min 30 s

Xiaomi Redmi 3s,
API 23, Android 6.0

VD 4 min 12 s 5 min 48 s 6 min 8 s
RD 1 min 52 s 2 min 16 s 2 min 36 s

DT - device type, VD - virtual device, RD - real device

images, because of host’s processor had mentioned instruction
set. During the 10 measurements (Table II), we found that
testing on a real device is approximately 2-3 times faster.
Therefore, in addition to virtual devices (to perform tests on
multiple devices), we will use the real device in particular.
With 150 submitted solutions (expected number of students in
2017), our system can check on real devices on average for 6
hours 27 min 30 sec. It’s quite long time, so we’ll run tests
probably every 12 hours.

During these tests, we encountered a problem with an
unexpected throwing of exception that there is no activity
opened. At the time of designing and testing the testing
environment, Espresso developers were unable to resolve this
problem, a few weeks later they fixed the bug. However, this
issue still persisted on some devices. We explored that the
problem occours while animations on a device are enabled, so
it is necessary to turn off all device animations before running
tests.

Other tests could not be tested on student solutions from
previous years because the structure of the projects (classes,
methods, IDs etc.) was not adapted to the proposed test
environment.

VII. FUTURE WORK

Improving the test process is an endless loop that can not be
stopped. Based on our partial results, we will monitor students’
responses to the test platform and customize test cases to bring
maximum benefit to the student and teacher. The results from
the real use in the course will be presented in the next paper
where we expect feedback from approximately 150 students.

Given the problems with UI test speeds and their occasional
unreliability with animations turned on (Espresso), we would
like to compare and research different UI test frameworks in
the future. Moreover, it might be interesting to require test
cases by students in their assignments, than we could check
these tests and use them to test other student assignments.
Students will help us build tests and reveal deficiencies in
testing process. About the evaluation of the tests made by the
students is written by Smith et al. in paper [31] from 2017.

VIII. CONCLUSION

This experimental investigation has analyzed the most com-
mon mistakes of students who have become involved in
previous runs of Application Development for Smart Devices
course. Based on these mistakes and with the inspiration of

M. Madeja and J. Porubän · Automatic assessment of assignments for Android application programming courses

– 236 –

the test pyramid concept, which seemed appropriate for use
in the given course, we designed a test environment and used
the appropriate test tools for the proposed tiers. In the end,
we have found that the number of tests in our platform is not
identical to the pyramid’s ideology.

Of all the suggested tools, it was possible to perform only
Monkey stress tests on solutions from past runs of the course.
The results of the stress testing of a small sample proved to be
appropriate and pointed to the inaccuracy of manual evaluation
of the assignments. At the same time, we looked at the length
of testing on real and virtual devices, and it was definitely
more reliable and faster to perform tests on a real device.
The authors also evaluated the advantages, disadvantages and
experience with testing tools.

ACKNOWLEDGMENT

The authors would like to thank all the participants in
the research, especially students and teachers of Application
Development for Smart Devices course. At the same time we
thank Wirecard company for sharing their research results,
experiences with mobile testing and any other methodical
help. This work was supported by project KEGA 047TUKE-
4/2016 Integrating software processes into the teaching of
programming.

REFERENCES

[1] M. Meeker, “Internet trends 2017,” CODE CONFERENCE, Tech. Rep.,
05 2017.

[2] StatCounter, “Operating system market share worldwide,” 09 2017.
[Online]. Available: http://gs.statcounter.com/os-market-share#monthly-
201101-201708

[3] J. Esposito et al., Mobile Application Development, C. Candelmo et al.,
Eds. DZone, 2016, vol. 3.

[4] M. Cook, “The 50 most popular moocs of all time,” 04 2015.
[Online]. Available: http://www.onlinecoursereport.com/the-50-most-
popular-moocs-of-all-time/

[5] Coursera Inc., “Courses and specializations,” 2017. [Online]. Available:
https://www.coursera.org/courses? facet changed =true&domains=
computer-science&languages=en&query=android

[6] edX Inc., “Android courses search,” 2017. [Online]. Available:
https://www.edx.org/course?search query=android

[7] M. Madeja, “Innovative approaches in introductory programming
courses,” Master’s thesis, Technical university of Košice, 05 2015.

[8] C. Domin, H. Pohl, and M. Krause, “Improving plagiarism detection
in coding assignments by dynamic removal of common ground,”
in Proceedings of the 2016 CHI Conference Extended Abstracts on
Human Factors in Computing Systems, ser. CHI EA ’16. New
York, NY, USA: ACM, 2016, pp. 1173–1179. [Online]. Available:
http://doi.acm.org/10.1145/2851581.2892512

[9] S. Mann and Z. Frew, “Similarity and originality in code: Plagiarism
and normal variation in student assignments,” in Proceedings of
the 8th Australasian Conference on Computing Education - Volume
52, ser. ACE ’06. Darlinghurst, Australia, Australia: Australian
Computer Society, Inc., 2006, pp. 143–150. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1151869.1151888

[10] H. Munir, K. Wnuk, K. Petersen, and M. Moayyed, “An experimental
evaluation of test driven development vs. test-last development with
industry professionals,” in Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering,
ser. EASE ’14. New York, NY, USA: ACM, 2014, pp. 50:1–50:10.
[Online]. Available: http://doi.acm.org/10.1145/2601248.2601267

[11] L. V. Soham Mondal, “Android app development,” 2017. [Online].
Available: https://www.springboard.com/learning-paths/android/

[12] D. C. Schmidt et al., “Launch your android
app development career,” 2017. [Online]. Available:
https://www.coursera.org/specializations/android-app-development

[13] F. A. Adrián Catalán, Noe Branagan, “Pro-
fessional android app development,” 2017. [On-
line]. Available: https://www.edx.org/course/professional-android-app-
development-galileox-caad003x

[14] R. Pecinovský, “Zadávánı́ a vyhodnocovánı́ úkolů při výuce oop,” in
Počı́tač ve škole 2007, Amaio Technologies, Inc. Nové Město na
Moravě, Czech rep.: Počı́tač ve škole, 2007, pp. 1–4.

[15] J. Sugrue et al., Automated Testing. DZone, 2017, vol. 1.
[16] Souce Labs, “Mobile app testing: Main challenges, different approaches,

one solution,” DZone, 09 2017.
[17] C. Q. Adamsen, G. Mezzetti, and A. Møller, “Systematic execution

of android test suites in adverse conditions,” in Proceedings of the
2015 International Symposium on Software Testing and Analysis, ser.
ISSTA 2015. New York, NY, USA: ACM, 2015, pp. 83–93. [Online].
Available: http://doi.acm.org/10.1145/2771783.2771786

[18] B. Amen, S. Mahmood, and J. Lu, “Mobile application testing matrix
and challenges,” in Computer Science & Information Technology, vol. 5,
04 2015.

[19] M. Akourm, B. Falah, A. A. Al-Zyoud, S. Bouriat,
and K. Alemerien, “Mobile software testing: Thoughts,
strategies, challenges, and experimental study,” in (IJACSA)
International Journal of Advanced Computer Science and
Applications(ijacsa), vol. 7. SAI, 02 2016. [Online]. Available:
http://thesai.org/Publications/ViewPaper?Volume=7&Issue=6&Code=
ijacsa&SerialNo=2

[20] Y. Wang and Y. Alshboul. (2016, 02) Mobile security testing approaches
and challenges. Gainesville, Florida, USA. [Online]. Available:
https://www.researchgate.net/publication/277132880 Mobile Security
Testing Approaches and Challenges

[21] H. Muccini, A. D. Francesco, and P. Esposito, “Software testing of
mobile applications: Challenges and future research directions,” in 2012
7th International Workshop on Automation of Software Test (AST), June
2012, pp. 29–35.

[22] C. Wilcox, “Testing strategies for the automated grading of
student programs,” in Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, ser. SIGCSE ’16. New
York, NY, USA: ACM, 2016, pp. 437–442. [Online]. Available:
http://doi.acm.org/10.1145/2839509.2844616

[23] T. Rajala, E. Kaila, R. Lindén, E. Kurvinen, E. Lokkila, M.-
J. Laakso, and T. Salakoski, “Automatically assessed electronic
exams in programming courses,” in Proceedings of the Australasian
Computer Science Week Multiconference, ser. ACSW ’16. New
York, NY, USA: ACM, 2016, pp. 11:1–11:8. [Online]. Available:
http://doi.acm.org/10.1145/2843043.2843062

[24] Y. Akahane, H. Kitaya, and U. Inoue, “Design and evaluation of
automated scoring: Java programming assignments,” Int. J. Softw.
Innov., vol. 3, no. 4, pp. 18–32, Oct. 2015. [Online]. Available:
http://dx.doi.org/10.4018/IJSI.2015100102

[25] S. Gupta and S. K. Dubey, “Automatic assessment of programming
assignment,” in ITCS, SIP, JSE-2012, e. a. Natarajan Meghanathan, Ed.
CS & IT, 2012, pp. 315–323.

[26] guru99.com. (2017, 08) Complete guide to android testing & automation.
[Online]. Available: https://www.guru99.com/why-android-testing.html

[27] A. I. Wasserman, “Software engineering issues for mobile application
development,” in Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research, ser. FoSER ’10. New
York, NY, USA: ACM, 2010, pp. 397–400. [Online]. Available:
http://doi.acm.org/10.1145/1882362.1882443

[28] C. Greb. (2016, 12) The 3 tiers of the android test pyramid. [Online].
Available: https://medium.com/android-testing-daily/the-3-tiers-of-the-
android-test-pyramid-c1211b359acd

[29] Google Inc., Test Your App, 2017. [Online]. Available:
https://developer.android.com/studio/test/index.html

[30] M. Madeja, “Testing of applications for os android,” Master’s thesis,
Technical university of Košice, 04 2017.

[31] R. Smith, T. Tang, J. Warren, and S. Rixner, “An automated system
for interactively learning software testing,” in Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science
Education, ser. ITiCSE ’17. New York, NY, USA: ACM, 2017, pp. 98–
103. [Online]. Available: http://doi.acm.org/10.1145/3059009.3059022

2017 IEEE 14th International Scientific Conference on Informatics

– 237 –

