Program comprehension from
the perspective of testing

1Matej MADEJA (1 year),
Supervisor: *Jaroslav PORUBAN

L2Dept. of Computers and Informatics, FEI TU of Kogice, Slovak Republic

!matej.madeja@tuke.sk, jaroslav.poruban @tuke.sk

Abstract—Program comprehension is an important part of
software development process. The paper looks for the ways
how to simplify program comprehension and finds how the tests
usage can facilitate it. Hence, we briefly define the program
comprehension, test types and their relationship. Moreover, we
analyze researches of similar issue and compare their approaches.
Finally, future research directions are suggested.

Keywords—program comprehension, testing, execution, source
code, projections

I. INTRODUCTION

Software development and in particular its maintenance
is demanding from time viewpoint. Many various research
projects deal with support of software development and try
to accelerate this process through software development envi-
roments, programming tool support, languages, etc. One of the
areas that arises is the comprehension of a program. Creation
and modification of software can be included under the wider
concept called software maintenance. During maintenance
many changes are made to the code, and when working in a
team, the programmer often needs to understand and modify
the source code of another one. Customer requirements often
mirror the problem domain that each programmer should un-
derstand to meet them in a specific implementation. However,
during the implementation of a system abstraction (semantic)
gap between problem and solution domain occurs [1]. The
goal is to maximize speed of software development and
management, therefore the reduction of the abstraction gap
is crucial.

II. PROGRAM COMPREHENSION

A person comprehends a program if one understands its
structure, behavior and connection to the application do-
main [2]. In a simplified interpretation, we can say that the pro-
gram comprehension is a level as a programmer understands
the existing program functionality, in order to improve func-
tional or non-functional qualities. As many researches point
out, this process tends to take up to a half of programmer’s
time during their work with the source code [3][4][5].

Program comprehension is an activity that helps expert pro-
grammers build a mental model of the program that includes
both program-specific and domain knowledge [6]. The mental
model is created in the programmer’s head from defined spec-
ification. Based on the created model, the programmer creates
a specific software artifact, the most common source code.
The code is then compiled into an executable application,

and the process is iteratively repeated. The order of actions
in this process is not fixed and may change (for example,
when the programmer has to understand a part of an existing
program, and the new implementation must adapt the existing
one). Domain understanding is the key to a successful system
development [7], but for maintenance, the programmer does
not need to know the entire code and the compete application
context.

Another area related to software maintenance is reverse
engineering. Frequently, these two areas are confused, but the
difference is that reverse engineering helps to understand the
program [8]. Reverse Engineering focuses on techniques and
tools to create high-level abstractions of the code, or in other
words it analyzes the source code to deduce design features.
Program comprehension looks into the effectiveness of these
tools and additional knowledge of software development prac-
tices.

III. APPROACHES OF PROGRAM COMPREHENSION

Comprehension congitive model is a description of a psy-
chological process included in program understanding to
achieve the mental model of the program [9] and we can divide
it into two basic approaches: top-down and bottom-up.

Some of existing models use various combinations of these
two approaches. Bottom-up comprehension models are based
on the fact that during the source code reading abstract con-
cepts are created by collecting low level information [10][11].
Understanding is achieved from the bottom up, ie. by reading
the code and mentally grouping the individual rows into
higher-level abstractions. This approach focuses on situations
where the programmer does not understand the domain, yet.
Example of this model is Pennington model [12].

On the other hand, as a reverse approach to program
comprehension, several top-down models have been proposed
when the programmer already had a previous (at least par-
tial) experience with the domain. An example is the Brooks
model [13]. The top-down models use the programmer’s
knowledge of the domain to create a set of expectations that
are mapped to the source code.

However, the real use of models indicates that programmers
do not exclusively rely on one approach but use their combina-
tions [14]. They use one approach as a pre-dominant strategy
based on their knowledge in the domain and slightly switches
between comprehension processes. Letovsky [15] claims that
programmers achieve ease of understanding by changing their
strategies of comprehension with regard to external stimuli.

202

SCYR 2018 — 18" Scientific Conference of Young Researchers — FEI TU of Kogice

IV. TESTING AS AN ADDITIONAL PART OF SOURCE CODE

The task of testing as part of the development cycle is to
ensure the source code stability. Testing identifies defects or
bugs of applications that need to be fixed. We can say that this
is a process of accessing the functionality and correctness of a
software through analysis [16]. Tests expose errors in the code,
which can also help in understanding the source code itself.
Imagine a situation where a programmer works in an unknown
code and has the task to implement the necessary functionality.
Interference with the source code can affect the original code
undesirably — break it. Tests can alert the programmer to
the appearance of error and reduce his comprehension gap.
Through the tests, the programmer can understand the program
better.

The main test tasks are quality assurance, reliability es-
timation, validation and verification [16]. The goal of each
development process should be to deliver a quality product
with the smallest cost (expense). Understanding the program,
possibilities of the integrated development environment (IDE),
programmer’s experience, programming language, and all
other aspects of the development process have a direct or
indirect impact on the resulting product. To understand the
software, we try to use everything that is relevant to the code,
so we consider tests will be a great choice.

Basically, we divide the tests into Static and Dynamic.
Static testing involves all types of reviews, inspections, and
walkthroughs. Dynamic testing or actual validation involves all
functional and non-functional testing types. Lewis [17] defines
and analyzes 60 existing test techniques in his book. The most
famous of them are black box, white box, grey box [18][16],
regression [19], reliability, usability, performance, unit etc. The
various methods that Lewis mentioned are often combined,
and by combining simpler methods brings extended testing
methods with new insights on software. In general, we know
the following main types of testing [20]:

« Functional Testing,
o Performance Testing,
o Security Testing.

A. Functional Testing

The goal of Functional Testing is to verify required func-
tionality and behavior. Test cases are created based on the
customer’s specifications, ie. they directly verify required func-
tionality. Since functionalities are closely related to program
comprehension (due to a narrow connection to functionality
and source code), the main types of functional testing are also
briefly described:

1) Unit Testing is the lowest level of testing mainly per-
formed by developer to test the unit of code. The purpose
is to isolate the smallest test pieces of the code and check
they are working properly in isolation [21].

2) Integration Testing is testing where tests communicate
with multiple different modules of the application. The
goal is to check whether the data pass through various
components correctly. The main representatives are top-
down and bottom-up tests [22] (a similar approach as in
the program comprehension, see Section II).

3) System Testing is a general test of the system in its
behavior and functionality based on the requirements
document. An example is regression, smoke or sanity
testing.

4) Acceptance Testing is mainly known as alpha and beta
testing. They make sure that the customer is able to
perform the required functionality.

5) White-box and Black-box Testing and their combination
(Grey-box Testing) [23]. Mostly used are for example
Data Flow, Coverage, Basis Path and Loop Testing [24].
In back-box testing, also known as Behavioral Testing,
tester does not know the internal structure, design,
implementation, application, respectively functionality
that is being tested. The advantage of black-box testing
is that it does not require the source code directly,
eliminating the need for instrumentation and source
code availability [25]. On the other hand, white-box
testing is the detailed investigation of the internal logic
and structure of the code where the tester understands
the internal structure of the system. The tester selects
inputs to achieve a specific workflow and compares
results with the expected output. Gray-box testing is a
combination of previous ones and involves having access
to internal data structures and algorithms for the purpose
of designing the test cases, but testing at the user or
black-box level [26].

To understand the program, we will be interested in all types
of functional tests because they are linked to the source code
and we will be able to use them to increase the program
comprehension. It might seem that from last group of tests
only white-box testing is suitable for us to understand the
program, as white-box testing expects to know the internal
structure of the code. It is a great assumption that the op-
posite approach when the programmer tries to understand
the functionality of the black-box test, will increase program
comprehension, too. On the other hand, white-box tests are
too complex and detailed [16][26] so black-box tests that are
not so closely related to the source code may be useful for
easier understanding of the program, because they look at the
functionality from the outside.

B. Performance Testing

Performance Testing is one of a non-functional testing types
and includes all time related parameters like load time, access
time, run time, execution time, etc. Most popular methods are
Stress Testing and Load Testing. These tests have more or less
a benchmark character, so they will not be interesting for us.

C. Security Testing

This testing type is important as to protect the information,
services, skills and resources of adversaries and the cost of
potential assurance remedies. Examples of these tests are Fuzz
Testing, Brute Force, SQL Injection or Penetration Testing.
For program comprehension they are not as important as
Functional Testing, but the partial test results we could use
the partial test results to improve the development process and
code quality.

V. STATE OF THE ART

The relationship between understanding the program and
testing shows a lot of research. Benedusi et al. in their pa-
per [27] investigated the role of testing and dynamic analysis in
the process of program comprehension. In their Docket project
they explored the potential of these activities for software

203

SCYR 2018 — 18" Scientific Conference of Young Researchers — FEI TU of Kogice

comprehension objectives. The paper says programmers are
using product manuals and reverse engineering to understand
the program’s maintenance. According to the authors test
cases are the passive or active subject of existing product
activities (specification, test case design, debugging & er-
ror analysis, change request formulation, change analysis,
regression testing) producing various kinds of peculiar and
valuable knowledge. They argue that test cases are important
starting points for the capture and reuse of knowledge acquired
empirically and lessons learned during the operational lifetime
of the product. They used manual alpha and beta tests, where
these tests may not only reveal common issues, but also
empirically highlight aspects of software that are the most
challenging and difficult to comprehend. On the basis of this
tests the programmer knows what is important to maintain the
system and finds out that for system maintenance is program
understanding necessary. They recommend using regression
testing to increase program comprehension.

Sneed [28] considers the tester as part of the development
team and in his paper he figured out that the tester is the
one who needs the broadest knowledge about the system.
The author describes in detail the requirements of the tester
and comprehension has been used here to define a knowledge
acquisition process. Testers need to identify the test objects,
to determine the test cases and to assess the adequacy of
their test efforts by means of a test coverage measurement.
When the tester knows the system at all levels (from a global
perspective) the author again brings us to the idea from the
opposite perspective that in tests are very valuable information
for understanding the program.

From the viewpoint of program comprehension, there is an
approach of concern-oriented code projections [29] and for
the programmer is provided only the selected and merged
source code related to a particular concern. LaToza et al. [30]
compared the code perception of experts with novices. They
have found that novices have analyzed code statement by
statement and wanted to understand the whole system, even if
it was not necessary. On the contrary, experts used "caching"
so they did not study every line of code, but they used higher
abstraction. Their results lead us to source code projections
which try to filter out unnecessary source code and show the
programmer only the parts that are relevant.

Moonen et al. in the book Software evolution [31] write
about the testing and evolution connection and its effect on the
program comprehension. They look at software development
and testing in the agile development process (Extreme pro-
gramming, XP). They introduce "test-driven refactoring”, or
refactoring of production code, too, which are induced by the
structuring of the tests. On the basis of real experience, they
confirm that the extensive test suite can stimulate the program
comprehension process, especially in the light of continuously
evolving software, and derive the following benefits for com-
prehension:

o testing policy encourages programmers to explain their

code using test cases,

« the requirement of 100% test success ensures the docu-

mentation is kept up-to-date,

« tests provides a repeatable program comprehension strat-

egy,

« a comprehensive set of tests reduces the comprehension

gap when modifying source code,

« systematic unit testing helps build team confidence.

(]
FX public void Enqueue(string v)
{
x throw new NotImplementedException();
]}
D
] = public double Count()
{
= throw new NotImplementedException();
}
o
v/ public T Dequeue()

Fig. 1. Unit tests results and test coverage in IDE Visual Studio 2017.

A. The opposite viewpoint

As we can see, above researches look at software develop-
ment as a chain of understanding functionality, implementation
and programming of tests. If a programmer explores the
foreign code, mostly he is not interested about tests, despite all
the above-mentioned researches show a close relationship with
the comprehension. The problem is not with programmers, but
with the tools that are used for development, mostly IDE. From
our point of view, we want to focus on linking existing tests
with main application source code within the IDE to bring
advantage for simpler understanding the existing code.

As mentioned in the Section IV everything that helps to
understand the program has the main goal of achieving high
quality product. The IDE can help with understanding the
program, using class browser, tests explorer, reference counts,
search, icons in editor, refactoring, etc. There are small utilities
that help the programmer with comprehension of source code
by interconnecting with tests. An example is Visual Studio,
where test results and their coverage are displayed directly in
the source code (Fig. 1). Above the tested method is visible
how many tests uses the method and how many tests were
successful. The programmer can navigate and find particular
test where he can analyze the issue. Before each line in the
editor is displayed the icon that represents the coverage of the
given line (red cross = covered by at least 1 failing test; green
check mark = covered by only passed tests; blue dash = not
covered). These tools are gently linked to tests, but the source
code of tests has much larger potential.

VI. FUTURE DIRECTIONS

All of mentioned tools and approaches for program com-
prehension are beneficial, our idea is in mining the context of
test and linking them to the main program code. Since any
research with similar idea has not been explored yet, for first
we will need to perform experimental observation of tools
designed to simplify program understanding (such as source
code projections). Experiments will focus on the functionality
and capabilities of these tools. Only then we can design new
tool in conjunction with tests.

A. Test Projections

Dynamic concern-based projections [29] seem to be an
interesting solution how to filter the source code from multiple
files into one view, simple to understand for programmer.
Similarly we should be able to create test projections. It means
that from multiple test classes we will be able to show just
needed tests. The programmer would then see different use-
cases of the application.

204

SCYR 2018 — 18" Scientific Conference of Young Researchers — FEI TU of Kogice

B. The Most Common Workflows

Tests often involve calling methods in a specific order. E.g.
the user sign in to the administration, goes to the user sub-
section, selects particular user account and changes password.
This process is subject to a certain call stack of methods to
be performed. We can assume the test scenarios created in
the tests will be often used the same way in the production
(by user). Therefore, on the test scenarios, the programmer
could see most used stack of methods call and they can help
to understand the context of code.

C. Web and Mobile Applications

Research is commonly realized on small or medium open-
source or self-developed application that often use the basic
system API, a few libraries, etc. In terms of applications in
production that are much more complex, the results of such
research are only partially usable, so we want to focus on
larger projects. Within our university we have courses such
as Web Technologies and Application Development for Smart
Devices, where students develop complex applications with
a lot of libraries where designed tools should be used for
experiments. Accordingly, there are many open-source web
applications, which means that we can explore the under-
standing of the already existing applications with a variety
of participants (expert, novice, student) who have not seen the
source code before.

ACKNOWLEDGMENT

This work was supported by project KEGA 047TUKE-
4/2016 Integrating software processes into the teaching of
programming.

REFERENCES

[1] J. Greenfield and K. Short, “Software factories: Assembling applications
with patterns, models, frameworks and tools,” in Companion of the 18th
Annual ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA ’03. New
York, NY, USA: ACM, 2003, pp. 16-27. [Online]. Available:
http://doi.acm.org/10.1145/949344.949348

[2] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The concept
assignment problem in program understanding,” in Proceedings of the
15th International Conference on Software Engineering, ser. ICSE ’93.
Los Alamitos, CA, USA: IEEE Computer Society Press, 1993, pp.
482-498. [Online]. Available: http://dl.acm.org/citation.cfm?id=257572.
257679

[3] T. Kosar, M. Mernik, and J. C. Carver, “The impact of tools supported
in integrated-development environments on program comprehension,”
in Proceedings of the ITI 2011, 33rd International Conference on
Information Technology Interfaces, June 2011, pp. 603-608.

[4] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the
comprehension of program comprehension,” ACM Trans. Softw. Eng.
Methodol., vol. 23, no. 4, pp. 31:1-31:37, Sep. 2014. [Online].
Available: http://doi.acm.org/10.1145/2622669

[S] R. Minelli, A. Mocci, M. Lanza, and T. Kobayashi, “Quantifying pro-
gram comprehension with interaction data,” in 2014 [14th International
Conference on Quality Software, Oct 2014, pp. 276-285.

[6] R. W. Collins, A. R. Hevner, G. H. Walton, and R. C. Linger, “The
impacts of function extraction technology on program comprehension:
A controlled experiment,” Inf. Softw. Technol., vol. 50, no. 11, pp.
1165-1179, Oct. 2008. [Online]. Available: http://dx.doi.org/10.1016/j.
infsof.2008.04.001

[7]1 R. Offen, “Domain understanding is the key to successful system
development,” Requirements Engineering, vol. 7, no. 3, pp. 172-175,
2002.

[8] H. Miiller and H. Kienle, “A small primer on software reverse engineer-
ing,” 01 20009.

[91 M.-A. D. Storey, “Theories, tools and research methods in program
comprehension: past, present and future,” Software Quality Journal,
vol. 14, pp. 187-208, 2006.

(10]

(11]

[12]

(13]

[14]

(15]

[16]

(17]

(18]
(19]

(20]

[21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

205

F. Détienne, Software Design - Cognitive Aspects.
2002.

N. Pennington, “Empirical studies of programmers: Second workshop,”
G. M. Olson, S. Sheppard, and E. Soloway, Eds. Norwood,
NJ, USA: Ablex Publishing Corp., 1987, ch. Comprehension
Strategies in Programming, pp. 100-113. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=54968.54975

, Stimulus structures and mental representations in expert compre-
hension of computer programs. Cognitive Psychology, 1987, vol. 19,
no. 3, pp. 295 — 341.

R. Brooks, “Using a behavioral theory of program comprehension
in software engineering,” in Proceedings of the 3rd International
Conference on Software Engineering, ser. ICSE ’78. Piscataway,
NJ, USA: IEEE Press, 1978, pp. 196-201. [Online]. Available:
http://dl.acm.org/citation.cfm?id=800099.803210

M. P. O’Brien, “Software comprehension — a review & research direc-
tion,” University of Limerick, Tech. Rep., November 2003.

S. Letovsky, “Cognitive processes in program comprehension,” in
Papers Presented at the First Workshop on Empirical Studies of
Programmers on Empirical Studies of Programmers. Norwood, NJ,
USA: Ablex Publishing Corp., 1986, pp. 58-79. [Online]. Available:
http://dl.acm.org/citation.cfm?id=21842.28886

M. Ehmer and F. Khan, “A comparative study of white box, black box
and grey box testing techniques,” vol. 3, 06 2012.

W. E. Lewis, Software Testing and Continuous Quality Improvement,
Third Edition, 2nd ed. Boston, MA, USA: Auerbach Publications,
2008.

S. Kumar Swain, D. Mohapatra, and R. Mall, “Test case generation
based on use case and sequence diagram,” vol. 3, 01 2010.

S. Thakare, S. Chavan, and P. Chawan, “Software testing strategies and
techniques,” vol. 2, 05 2012.

I. Hooda and R. S. Chhillar, “Software test process, testing types and
techniques,” International Journal of Computer Applications, vol. 111,
no. 13, pp. 10-14, February 2015, full text available.

E. Daka and G. Fraser, “A survey on unit testing practices and prob-
lems,” in Software Reliability Engineering (ISSRE), 2014 IEEE 25th
International Symposium on. 1EEE, 2014, pp. 201-211.

S. WeiBleder and H. Lackner, “Top-down and bottom-up approach for
model-based testing of product lines,” arXiv preprint arXiv:1303.1011,
2013.

M. Ehmer Khan, “Different forms of software testing techniques for
finding errors,” vol. 7, 05 2010.

N. Gupta, “Different approaches to white box testing to find bug,”
International Journal of Advanced Research in Computer Science &
Technology (IJARCST 2014), vol. 2, no. 3, pp. 46 — 49, July - Sept.
2014.

C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon,
“Comparing white-box and black-box test prioritization,” in Proceedings
of the 38th International Conference on Software Engineering, ser.
ICSE ’16. New York, NY, USA: ACM, 2016, pp. 523-534. [Online].
Available: http://doi.acm.org/10.1145/2884781.2884791

S. Acharya and V. P. Pandya, “Bridge between black box and white box
— gray box testing technique,” International Journal of Electronics and
Computer Science Engineering, pp. 175 — 185, 2012.

P. Benedusi, V. Benvenuto, and L. Tomacelli, “The role of testing and
dynamic analysis in program comprehension supports,” in [1993] IEEE
Second Workshop on Program Comprehension, Jul 1993, pp. 149-158.
H. M. Sneed, “Program comprehension for the purpose of testing,” in
Proceedings. 12th IEEE International Workshop on Program Compre-
hension, 2004., June 2004, pp. 162-171.

J. Porubdn and M. Nosdl’, “Leveraging program comprehension with
concern-oriented source code projections,” in OASIcs-OpenAccess Se-
ries in Informatics, vol. 38. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2014.

T. D. LaToza, D. Garlan, J. D. Herbsleb, and B. A. Myers, “Program
comprehension as fact finding,” in Proceedings of the the 6th Joint
Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering,
ser. ESEC-FSE ’07. New York, NY, USA: ACM, 2007, pp. 361-370.
[Online]. Available: http://doi.acm.org/10.1145/1287624.1287675

L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink, On
the Interplay Between Software Testing and Evolution and its
Effect on Program Comprehension. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 173-202. [Online]. Available: https:
//doi.org/10.1007/978-3-540-76440-3_8

Springer London,

