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Abstract—This paper presents a proposal of usage continuous
analysis of assignment evaluation results in a real programming
course with 585 students to improve syllabus and teacher adap-
tation. The use of Elastic Stack has proven to be a convenient
solution in terms of both efficiency and cost. At the same time the
article answers important questions about the attitude of students
in such courses. It was found that the structure and compilation
issues persist during the whole course, the failure of the first
assignment demotivates the student in solving following tasks
and the number of students with the highest grades decreases.
An important result is that students have only used 10% of the
evaluation possibilities on average and work mostly on weekends
and in the evenings. At the same time an increased number
of above-average results was observed while using the same
assignments as in previous course runs.

I. INTRODUCTION

The development of software engineering teaching meth-
ods is closely connected to software development practices
in real companies. Boehm [1] describes how the view on
software development has changed since the 1950s to the
present, claiming that the 21st century is characteristic by
rapid software development and the introduction of agile
methods. The iterative way of teaching can be observed in
many massive open online courses (MOOCs) on the internet
and universities. Popular methods of development where also
included in multiple courses of Technical University of Košice
in order to better preparation of students for real companies
(see [2]).

There are many ways to motivate students to work contin-
uously on assignments and to be active during labs. Based
on the recommendations of Nadipineni [3] and van Vilet [4]
we have made changes in several courses at our department,
e.g. adjusting course curriculums according to popular online
courses, distributing the difficulty of assignments throughout
the whole semester and including the human factor in software
development (e.g. working in teams). According to Fridge [5]
programming of real projects that require real deployment to
the production is also a very important factor of a successful
course.

In our previous research [6] we observed the impact of the
assignment type on student behavior in introductory program-
ming courses at our university through multi-annual analysis of
results from the developed testing platform [7]. Although the
results have been beneficial it can be assumed that continuous
publication of classmates’ general statistics can motivate a
particular student and improve mental model creation [8].
However, in courses with a large number of students and
frequent evaluation of assignments there is a large amount of
data that need to be evaluated and published in a short time.
This article therefore deals with the proposal for processing
and publication of such data at short intervals after evaluation
by an automated system.

The data can also help the teacher to respond better to
the work of the students. For example, if it is clear that
students are not continuously working on the assignment the
teacher may change the difficulty of other tasks. Because each
course run is attended by unique students who have different
experiences, interests and motivations, continuous analysis of
students’ assignments can improve the learning process for
a particular group by tuning the curriculum or adapting the
teacher’s behavior.

Since at our university the automated testing platform called
Arena has been collecting data for several years in various
courses we would like to to bring new knowledge about
the behavior and attitude of the student when developing
the assignments during the course. The article answers the
following hypotheses:

H1: Problems with the structure and compilation of
assignments are highest in the beginning and are
gradually decreasing.

H2: Students who gained 0 points for the first assignment
improved in the next assignments.

H3: Most students get the best score in problem set 1
(PS1) and this number is gradually decreasing in the
next PSs.

H4: The highest activity of students is during weekends
and evenings.
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H5: The average number of used evaluation terms is less
than 25%.

H6: Most students achieve an average score.
In Section II Arena platform and data visualization options

are described. Section III focuses on the design of LST
Stack incorporation into existing assignment testing platform,
Section IV presents results of the experiment and Section V
discuss related work. Research plans for the future and con-
clusions are described at the end.

II. STATE OF THE ART

A. Arena platform

Arena1 is a system for testing and evaluating student
programming assignments. The input data is the assignment
source code from the university GitLab repository. For each
assignment the student creates a separate repository with a
defined structure and saves his/her solution there. Solutions
are evaluated in parallel using the celery2 workers, each in
a separate Docker3 container. The evaluation runs at specific
intervals (e.g. every 3 hrs) and the last commit in the master
branch is used. The evaluation process includes the following
steps:

• project download from GitLab repo,
• unpacking and structure check,
• compilation and testing in a docker container,
• writing results to SQL database and showing them in a

web presenter.
Tests execution is sequential. If a test is marked as strict

and its evaluation is unsuccessful further tests at that nesting
level do not continue. Standard input, output and error output
are also part of the test results. The system also offers the
possibility to define error messages to help students identify
found issues.

Information about the test results of a specific project is in
the JSON format and contains information about the test run,
project, student, evaluation result and array of each step of the
tests. Each testing step contains information about the test, its
description, result, type, inputs and outputs or sub-steps.

B. Data analysis and visualization tools

In order to choose the right tools for our solution we made
our own ranking of the appropriate tools. The created ranking
was based on popularity, research recommendations, price,
performance, support, etc. The three best ranked tools from
our ranking are briefly compared in the following sections.

Microsoft Power BI4 is an advanced business data visual-
ization software. In it’s free version offers the possibility to
import data from available open datasets, unlimited creation
of visualizations and their storage in the Power BI cloud.
Importing custom data by connecting to a live relational or

1https://arena.kpi.fei.tuke.sk/
2http://www.celeryproject.org/
3https://www.docker.com/
4https://powerbi.microsoft.com

document database is only available in paid packages. Power
BI does not support Unix-based operating systems (OS).

Tableau5 offers data analysis from a wide range of sources,
from databases to cloud storage. It is available for Windows,
MacOS, Linux, iOS and Android. Tableau does not have a free
version so it requires increased demands on the entry budget.
The software is focused on enterprise deployments with an
emphasis on collaboration and availability.

Elastic Stack (ELK Stack)6 is a set of open-source ap-
plications for processing, storing, analyzing, full-text search
and data visualization. It consists of three main platform
components:

• Elasticsearch - realtime distributed search and analytics
engine,

• Logstash - tool for collecting, filtering and transforming
input data,

• Kibana - tool for data analysis and visualization in the
Elasticsearch.

To use Kibana as a data visualization tool it is necessary to
index the data in the Elasticsearch database. All the necessary
parts from indexing to data visualization are available in
the free version of the ELK Stack. The big advantage is
the availability of a large community of users and their
support in the platform discussion forums. ELK Stack can be
deployed on own server which is a huge advantage for the
usage at university. The platform also has a paid version that
adds additional functionality, e.g. authentication, authorization,
monitoring, etc.

The most important factor in choosing the final tool were
the free version possibilities and OS support. Elastic Stack of
the above tools offers the best options so it will be used for the
solution proposal. Power BI is only supported for Windows OS
and since Linux servers are mainly available at our university
the tool is not suitable. Tableau offers only a paid version for
which the university does not have the funds.

III. INCORPORATION OF LST STACK

Figure 1 shows a conceptual model using the LST Stack to
visualize students’ results from the Arena platform. As men-
tioned in the Section II-A, the input data for the Arena is the
source code from GitLab. This data will enter the Gladiator-
Elastic-Bridge component which is designed to transform the
input data and index it into the Elasticsearch database. The
data can then be analyzed and visualized using the Kibana
tool which connects to the Elasticsearch database.

Kibana provides the ability to create embeddable visualiza-
tions but in free version these visualizations are only functional
when the entire Kibana is freely available (i.e. without autho-
rization) which is a possible security risk. Therefore, part of
the proposed solution is also Kibana Reporter module which
creates PNG exports of active visualizations. Exports can later
be used on foreign websites without mentioned vulnerability
issues.

5https://www.tableau.com/
6https://www.elastic.co/what-is/elk-stack
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Figure 1. Proposed conceptual model of continuous analysis of students’
results.

A. Data preprocessing

Data stored in Arena database have JSON format with
nested structures. An example of a nested object to be analyzed
is the individual tasks that belong to a specific suite. Elas-
ticsearch also supports filtering and aggregation over nested
objects. However, when testing Kibana possibilities it was
found out that it does not support nested objects (see [9]), so
visualizations over task objects would not be possible with
direct indexing data from the Arena system to Elasticsearch.

This issue has been solved by data transforms using multiple
indexes with different mappings without nesting; called flat-
tening. Based on data format in Arena database two mapping
types were created:

• 1st mapping contains an overall overview of the assign-
ment evaluation, e.g. overall result, info about student and
assignment, etc.

• 2nd mapping contains evaluation details of each testing
step. Each record contains general information about the
student and then details such as gained points, errors, test
type, duration, etc.

This whole process is handled by the web microservice
Arena-Elastic-Bridge which receives POST requests and trans-
forms the data into the necessary form. The prepared data
are then inserted into the Elasticsearch index using the REST
interface. Since the indexing of individual tasks expects a large
amount of data the bulk API interface was used which accepts
an array of objects in ndjson format as the input.

B. Publishing visualizations

Because we want to publish statistics to students contin-
uously during the course and also inform the teacher about
the current status of the results, we need to publish the
results using Kibana Reporter. It is a Python server application
based on the use of the Selenium API library to work with
the browser. Using this library the application opens Kibana
visualization in Chrome browser in headless mode, waits until
the visualization is completely loaded and takes a screenshot
in PNG format. This way it takes screenshots of all specified
visualizations and using the scp protocol copies the resulting
images to a web server, e.g. to a specific course website.
Kibana Reporter runs immediately after evaluating of all
students’ assignments.

IV. RESULTS

Data from Programming7 in 2018 were used for the anal-
ysis. The course was attended by 585 students and we are
considering the results of all 4 problem sets (PS); the first three
problem sets were mandatory (PS1-3), the last one optional
(PS4). In the Table I general statistics about particular assign-
ments in the course can be seen. The assignment evaluation
was running at three-hour intervals and the number of days
the assignment could be submitted varied according to the
difficulty of the assignment.

Table I
GENERAL STATS ABOUT ASSIGNMENTS IN THE COURSE Programming

2018.

PS Involved
students

Students
with 0p

Commits Possible
evaluationsmax avg

1 536 70 368 73 328
2 512 83 114 24 422
3 444 48 151 21 441
4 253 69 109 15 324

PS - Problem Set.

A. Hypotheses verification

The H1 assumes that when analyzing individual tests and
observing unsuccessful test steps the number of failed tests for
checking the structure of the assignment, static analysis, and
program translation will be the highest at the beginning of the
assignment and decreasing to the approaching deadline. In the
Figure 2 it is possible to see the number of failures of structure
check, static code analysis and compilation results during each
day. It can be seen that the structure check failure actually
occurred predominantly at the beginning of the assignment,
but problems with static code analysis and translation persisted
throughout the assignment. The H1 was therefore refuted.

Figure 2. Numbers of failed structure checks, static code analysis and
compilations.

This result is interesting because the assignment compilation
method was published to the students in advance. Neverthe-
less, the biggest issues were with the compilation. During
the interviews, the students often argued that the compilation
mostly failed in cases when the latest solution was submited
without thorough tuning, using the ”trial and error” approach.

7https://kurzy.kpi.fei.tuke.sk/pvjc/
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Figure 3. Progress of students’ evaluation assessed by 0 points in PS1.

In order to eliminate abuse of this approach the number of stu-
dent submissions should also be considered in the evaluation
in the future. The second students’ argument was the opinion
that the compilation in a testing (evaluation) environment is
different from that in their development environment. At the
same time, only the master branch was used for evaluation
which means that students often develop directly in the main
branch and cannot create development branches in the version
control system (VCS).

The hypothesis H2 assumes that if a student gains 0 points
in the assignment, the student will work harder in the next
assignments and improve his/her results. We analyzed all
students who gained 0 points in PS1 and followed their results
in other problem sets using heatmap (see Figure 3). It can
be seen that the ranking of some students in the following
assignments was better, even sometimes achieving excellent
results (dark colors of the heatmap). However, improvement
occurred in less than 50% of the observed students so the H2
was refuted.

At the same time we can observe that more than 25%
of students did not develop PS2 and this trend continued in
further assignments. All PSs were developed by only 20% of
these students indicating that the student’s first failure has a
big influence on further student’s work. This fact, however,
is unlikely to be affected as it is dependent on the individual
characteristics of the student.

To verify the H3 we monitored the number of students with
a 100% evaluation in the PS1. In the Figure 4 it is apparent that
the largest number of students with the highest grades is in PS1
and this number decreases during the semester. The decline in
success is a good indicator that the difficulty and complexity
of tasks increase during the semester. At the same time when
comparing the results to the Table I it can be seen that the
average number of commits is decreasing. This means that
students either work more responsibly and do not use the ”trial
and error” approach or, on the other hand, are demotivated by
the complexity of the assignment. The H3 was confirmed.

The hypothesis H4 assumes that students work most on
weekends. The Figure 5 shows that students work in addition
if they have personal time off, ie. most often over the weekends
and Fridays. The highest activity can be observed on Sunday

Figure 4. The number of students with the maximum possible result for each
course problem set.

but this result may be influenced by the tendency to develop at
the last minute because the deadline for all assignments was
on Sunday at 12 PM. Last minute submissions have also been
confirmed in our previous analysis [6].

Figure 5. Commits number for each day of the week.

The Figure 6 shows the average number of commits per hour
of the day. Most of the student activity is in the afternoon
and the highest values are around 8 PM and 9 PM. The H4’s
claim that students’ highest activity is on weekends and in the
evening has been confirmed.

Since students’ solutions are evaluated every 3 hours and
the opportunity to submit the assignment has been at least 7
days in each assignment, students have relatively many op-
portunities to submit a new solution for evaluation. However,
many of the possible evaluations are unlikely not used, as the
H5 claims. It can be seen from the Table II that the average
number of evaluation used is far below 25% of the available
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Figure 6. Commits number per hour of the day.

capacity, so the H5 has been confirmed. At the same time,
it was found that the majority of students use the minimum
number of commits so as mentioned above it would be useful
to develop a dynamic way of assessing assignments, so that
students with a large number of submission attempts will be
penalized.

Table II
THE AVERAGE NUMBER OF TERMS USED BY STUDENTS IN EACH PS.

PS Evaluation terms
Total No. AVG/student AVG-5%/student*

1 93 8.58 8.22
2 76 10.52 10.14
3 116 12.61 12.23
4 60 9.96 9.59

* - Minus 5% of extreme values.

To confirm or refute H6 we have graphed the overall score
for each problem set (see Figure 7). Obviously, with the
exception of PS3 where there were the most average students,
in other cases there were most above average (PS1, PS2)
or below average (PS4) ones. The only difference between
the problem sets was that the PS3 contained completely new
tasks that had not been used in the course in previous years.
The first two problem sets were used in a similar form for
the fourth consecutive year, PS4 was used a second time.
These results probably indicate that the correct solutions were
available to students so PS3 is the most relevant result. It
is interesting that during each evaluation we had active anti-
plagiarism protection which did not draw so much attention
to cheating. This may be due to the fact that the students had
the correct solutions, but they were only inspired by them
and there was no plagiarism. The hypothesis H6 was not
confirmed.

B. Experience from the teacher’s perspective

During the whole semester we tried to actively talk with
the students what they liked about the assignments, what tasks
they had in other courses and what motivate them to develop or
not develop the assignments. When looking at the Table I it can
be seen that PS1 and PS2 were attended by the most students.
Since PS1 is usually the easiest one students try to work hard
from the beginning because they expect more difficult PSs

Figure 7. Distribution of students’ assignments results in the course Pro-
gramming 2019.

later. In other PSs it can be seen that with increasing difficulty
the students are often demotivated and sometimes do not solve
the assignment at all because the student reassesses his/her
own skills to gain enough points. This decline is often due
to a comprehension underestimation of basic programming
approaches learned at the beginning of the semester which the
students are subsequently unable to use within a more difficult
assignment and they prefer to give up. Reduced activity during
the assignment is also related to the increased workload of
students in other courses at the end of the semester.

As the teachers had all the continuous statistics available
they also tried to talk about possible problems with the
students. In general, the students did not show frustration
with the assignment and they were more enthusiastic, but also
aware of the difficulty of the tasks. Compared to previous
years course runs we observed a higher number of attempts
to evaluate the assignment, ie. students are motivated to work
continuously.

The publication of continuous statistics can have a positive
impact on students but possible negative impacts should also
be considered. For example, if a very small number of students
were involved in the first PS and students can see a decline
in the interest of their classmates it could also negatively
affect their motivation. A student is often inspired by compe-
tition among classmates, especially if only a certain number
of students can continue their studies. Therefore, from our
experience we recommend results that may adversely affect
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the student not to publish. Of course, this should be verified
by an experiment in the future.

V. RELATED WORK

Improving the learning process is subject to continuous
development. Blikstein in his work [10] proposes the use of
open-ended assignments in programming courses that support
improvement of creativity, critical thinking, problem-solving
skills, communication and collaboration. Such assignments
can evolve in different directions and their evaluation is a
complex process. Most often automated systems focus only
on assessing outputs and do not consider the whole process
of problem solving, e.g. mental model development in the
student’s head. Blikstein analyzed data obtained during stu-
dents’ assignment solving progress where he recorded what
the student writes, where he or her clicks, and especially he
observed changes in the code. At the same time, the author
suggests metrics that allow to identify possible critical zones
during which the student needs help. However, this process is
only possible with constant monitoring of the student (e.g. in
the classroom), in our case we observed the student’s activity
at home.

Visualization of data in education also describe Diana et
al. in [11]. Their intention is to inform the teacher about
possible problems in class work. Students often do not ask
the teacher even if they need help. The authors suggest a way
to predict such situations and identify students in need of help
based on Alice8 system data. The teacher can better respond to
the student’s needs. In our case we focus on the more global
nature of student adaptation, since we focus not only on short
duration of labs but on the student’s behavior during the whole
semester.

Bagui and Fridge [12] describe the benefits of automated
systems and their ability to increase student motivation. At
the same time, Ihantola et al. [13] analyze various assignment
evaluation systems and wonder why others are still evolving.
Their claim is that systems usually share the same principles
but are mostly designed for one course only. In this paper
we use a general system to evaluate assignments in multiple
courses and propose the use of this data to better manage
courses and motivate students.

Freely available datasets are often used in research, e.g.
from the code.org [14] programming competition or the
Code Hunt Game platform. Perhaps the best known dataset
is Blackbox [15] which contains compilation level data of
hundreds thousands of students but does not contain data on
the correctness of the solution. The above researches show that
data collection and analysis usually focuses on already ended
courses. In our case we try to perform the analysis immediately
after the evaluation of all student assignments, ie. in a much
shorter time.

VI. FUTURE WORK

As mentioned in IV-B it is necessary to investigate the
impact of publishing negative results on students. At the

8https://www.alice.org/

moment we do not know how students would react to bad
results in a real course but our experience suggests that the
student is often influenced by the classmates’ behavior within
the course. At the same time consideration should be given
in the future to the possibility of allocating extra points for
program efficiency (e.g. CPU usage time) or penalizing too
frequent submissions.

In our further research we also would like to focus on
comparing the results within different courses, ie. whether the
results from the introductory programming courses affect the
results in the following ones. It would also be useful to analyze
in detail how students make changes in the code during the
assignment development. For example, whether the number
of new/changed lines in the project is related to the number
of points earned, what are the differences in the code if the
student tries to submit the assignment in shorter time intervals
compared to longer intervals and so on.

Since in this paper we did not focued our observations on
interviews with the students in detail it would be advisable
to consult current statistics directly with students and monitor
their responses to these results. It should be in the interest
of the teacher to understand how the students perceive the
curriculum, their approach to the course and how the envi-
ronment influence them (assignments, teachers, classmates or
other courses).

VII. CONCLUSION

In the paper authors describe the integration of continu-
ous data evaluation and visualization possibilities from the
automated testing platform Arena in programming courses.
The Elastic Stack was used for the evaluation and the paper
also describes a generally applicable design for the evaluation
system with used tools description. There are also described
methods of data preprocessing for indexing with respect to
some limitations of used tools.

Using the newly designed platform in the course with 585
students a number of hypotheses about the behavior of the
students in the course are evaluated, as well as the teacher’s
viewpoints. It was found that the problems with the structure
and compilation of the assignment do not occur only in the
first problem set but during the whole semester. This is a result
of making last minute changes without enough tuning before
submitting the assignment for evaluation. It was also found
that only 20% of students who gained zero points in PS1
tried to pass on all the other assignments, suggesting that the
students are considerably demotivated in the first assignment.
On the other hand, the number of students with the maximum
number of points decreases during the semester.

This paper also observes when the students most often work
on the assignments. It has been found that students work
most often in the evening and especially during weekends and
Fridays. However, this may be affected by the fact that the
deadline was usually on Sunday at 12 PM. On average, the
students used only 10% of the possible evaluation terms and
only rarely used the ”trial and error” approach. It was also
found that the students achieved mostly above-average results.
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The average results were observed only on the assignment
that was used for the first time, so above-average results are
probably the result of the correct solution inspiration of already
existing implementations.

From the teacher’s point of view continuous analysis of
students’ results is beneficial for better course management
and dynamic syllabus adaptation. Nevertheless, it is necessary
to be vigilant when publishing student results as they may
have the potential to decrease student motivation.
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[15] N. C. C. Brown, M. Kölling, D. McCall, and I. Utting, “Blackbox: A
large scale repository of novice programmers’ activity,” in Proceedings
of the 45th ACM Technical Symposium on Computer Science Education,
ser. SIGCSE ’14. New York, NY, USA: ACM, 2014, pp. 223–228.
[Online]. Available: http://doi.acm.org/10.1145/2538862.2538924

492


