
Accuracy of Unit Under Test Identification Using
Latent Semantic Analysis and Latent Dirichlet

Allocation
1st Matej Madeja

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics

Technical University of Košice
Košice, Slovakia

matej.madeja@tuke.sk

2nd Jaroslav Porubän
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics
Technical University of Košice

Košice, Slovakia
jaroslav.poruban@tuke.sk

Abstract—Identification of unit under test (UUT) from a test
is often difficult and requires wider source code comprehension.
By automating this process it would be possible to support
the program comprehension and reduce software maintenance
process. In this paper the Latent Semantic Analysis (LSA) and
the Latent Dirichlet Allocation (LDA) were used which proved
to be inaccurate in the UUT identification. The experiment
was conducted on 5 popular projects where 1,093,730 similarity
results were obtained. It was found out that the best topic
number for the LSA model is from 7 to 10, the LDA model
had big differences in this value, so it was not possible to define
a stable value. The best UUT identification accuracy compared
to manual testing has been obtained with the LSA model with
result of 7.63% success, where documents were preprocessed
using words splitting based on naming conventions and Java
keywords removal. The accuracy of the LDA model was almost
zero. Further 8 manual identification errors were discovered
during the experiment.

Index Terms—program comprehension, latent semantic anal-
ysis, latent dirichlet allocation, github mining, unit under test

I. INTRODUCTION

Natural language processing (NLP) attempts to reduce the
barriers in computer-to-human communication [1]. This pro-
cess involves the correct text analysis, then the determination
of its semantics and the execution of the required action.
During the implementation of the program source code the
programmer writes statements in the prescribed syntax of
a non-natural language but many times expresses thoughts
that are important to facilitate program comprehension in the
future – either for himself/herself or for other programmers.
These thoughts are expressed mainly by following naming
conventions (e.g. Java Coding Style Guide [2]) which task is to
simplify the representation of the code in the problem domain,
e.g. by semantically correct naming of classes, methods,
variables, etc. Based on the research by Butler et al. [3] it
can be seen that the names of the identifiers have a significant
impact on the information mining from the source code and
its comprehension by the programmer.

In our previous research [4] we focused on word frequency
analysis between test and production classes in 5 popular
Android projects on Github1 and general testing practices.
Because the tests can be considered always up-to-date docu-
mentation of the production code we found out that the words
used by the programmers in the tests and the production code
are very similar. It was also found that 49% of the analyzed
test titles included the full name of a particular unit under
test (UUT) and even 76% the partial name. The production
and test method bodies also used similar vocabulary. A lot
of vocabulary is placed in comments in the form of natural
language.

From the above it is possible to assume that each source
code file uses its own vocabulary. The used words are not
in the form of sentences so it is not possible to search
for semantics between words within the final set of words
(sentence). But each document contains a set of words that
together characterize a whole, e.g. in Java the most common
a single file will represent a class.

A general problem during the test code comprehension is
the UUTs identification, especially when one test class tests
multiple production classes. According to McGlauflin [5] in
Java one production class should be tested by only one test
class and the programmer is led to this convention also using
an integrated development environment (IDE) tool. If this
convention is followed it can be assumed that the test and
production classes will have similar vocabulary.

The aim of this paper is to use 2 models of natural language
processing (NLP) techniques: Latent Semantic Analysis (LSA)
and Latent Dirichlet Allocation (LDA). These models are some
of the least computationally complicated in the NLP field and
could greatly help identify UUTs based on the vocabulary
of test, thereby simplify program comprehension and prevent
faults. In this paper the following research questions are
discussed:

1https://github.com/

M. Madeja and J. Porubän · Accuracy of Unit Under Test Identification Using Latent Semantic Analysis and Latent Di...

978-1-7281-3180-1/19/$31.00 c�2019 IEEE – 248 –

RQ1: Is there a general topics number for processing
source code files without the need of searching it?

RQ2: How exactly can UUT be identified from the test
class vocabulary?

RQ3: How to preprocess source code documents for model
training to the obtain best results?

In the Section II we briefly describe usage basics of LSA
and LDA models to process natural text without mathematical
details, since they are not important to the problem this
paper deals with. The Section III describes the programming
language selection, used libraries and data preparation for
processing. The results are described in the Section IV and
at the end of the paper threats to validity, related work,
conclusions and future work are discussed.

II. LSA AND LDA MODELS

Both models are information retrieval (IR) algorithms that
expect vectors as input, mainly because their nature is math-
ematical operations involving matrices. The input strings are
therefore represented as vectors and this type of representa-
tion is called Vector Space Model. Based on these vectors
a particular NLP model can make predictions. The aim of
these algorithms is to train the model from the input data to
minimize the occurrence of prediction errors.

There are different representations of text as a vector. The
most straightforward representation is bag-of-words (BoW)
and it is an orderless document representation, so only the
counts of the words matter. This leads to loss of word order,
syntactic relations, or morphology [6]. However, in our case
most of the input data except comments will not have the
form of natural text, so this is not critical. For most IR
algorithms the frequency of word occurrence is sufficient for
calculation. A slightly more sophisticated model is tf-idf (term
frequency-inverse document frequency), which tries to encode
two different kinds of information - term frequency and inverse
document frequency [7]. Term frequency (tf) is the number of
times the word appears in a document. It is possible to extend
these models, for example using topic models. Both LSA and
LDA can use bag-of-words model to obtain term-document
matrix.

In the following subsections selected models without math-
ematical details are described. A detailed explanation of both
models can be found in [8] and [9]. Cvitanic et al. [10] discuss
models’ differences in more detail.

A. Latent Semantic Analysis
LSA is an indexing and IR method that uses Singular

Value Decomposition (SVD) to identify relationships between
words in an unstructured text. The model is based on the
assumption that words used in the same context have a similar
meaning [8]. By extracting terms from the document’s body
it seeks to create relationships between individual documents.
It is important to choose a right number of topics to generate
because if too many topics are requested for a short document
the algorithm returns also words that should not determine the
resulting topic of the document and vice versa.

B. Latent Dirichlet Allocation
The model considers each document as a set of topics which

characterize it [9]. Each topic consists of a set of words in a
certain proportion. Based on the number of topics required
the model attempts to rearrange the topics distribution within
the documents to achieve the best composition. It is also very
important to determine the right number of topics that the
algorithm returns.

C. Number of topics
To evaluate the quality of a trained model, which is signifi-

cant for results of both considered models, can be determined
by topic coherence that is a measure used to evaluate topic
models. The topic coherence is applied to the top N words
from the topic and it is defined as the average/median of the
pairwise word-similarity scores of the words in the topic [11].
A good model will generate coherent topics with high coher-
ence scores. Good topics are those that can be described by a
short label.

III. METHOD

The experiment was conducted on 5 popular Android
projects from our previous research [4]. In order to know the
success rate of particular NLP models in identifying a UUT
from a test it is necessary to establish a link between the
test and the production classes. Since we performed a manual
analysis of 617 tests in [4] we can partially use the collected
data for this experiment. We assume that manually created
links are correct. The source codes of considered projects (see
Table I) are from February 2019 to preserve consistency with
manually collected data. The projects were selected on the
assumption that the most popular projects will include tests
(see more in [4]).

TABLE I
GENERAL STATS OF MANUALLY ANALYZED DATA. [4]

Project Prod.
classes

Prod.
methods

Test
classes

Test
methods

plaid 37 71 39 180
ExoPlayer 49 98 53 323
Android-Clean
Architecture 17 22 17 29

shadowsocks-
android 6 7 6 8

iosched 16 40 16 77
SUM 125 238 131 617

The Table I shows that in most cases the convention that
one UUT (production class) is tested by one test class has
been fulfilled, so in 125 cases we can clearly establish the
expected connection between the test and production class.
For tests that test multiple production classes the most tested
production class will be considered as correct UUT.

A. Programming language and library
For projects’ source code analysis we chose Python lan-

guage which is great for processing computationally difficult
tasks. Also availability of gensim [12] library for this language

2019 IEEE 15th International Scientific Conference on Informatics

– 249 –

was crucial. The library is very popular in the NLP field
and according to its author Řehůřek [13] gensim is the most
robust, efficient and hassle-free piece of software to realize
unsupervised semantic modeling from plain text.

B. Documents preparation
All analyzed projects are built on the Android platform

and implemented in Java and/or Kotlin. For each project
we recursively searched for files having the .java or .kt
extension. Kotlin is designed to interoperate fully with Java
so they use similar programming conventions and it is also
suitable for our analysis. Of course, only the files of the project
were included in the analysis, i.e. without dependencies and
platform software development kit files. We already knew the
names of the test classes from [4] so we divided the particular
files into test and production set. The content of production
classes served for model training and content of test classes
for searching similarity.

File preprocessing was the same for both test and production
classes. From the content of each file new line characters have
been removed and result was saved in a project-depended
training file. One line in this file represented one document
for further processing.

Since the result is highly dependent on the quality of the
input data and is governed by the idiom ”garbage in, garbage
out”, it is very difficult to assume in a non-natural text how it
should be properly preprocessed. To find out how to prepare
input documents in the best way (RQ3), we incrementally
created 5 versions of document preprocessing:

1) Full version - original file version, removed only
\n chars.

2) Word split - all camelCase or snake_case words
has been split. Words out of base conventions, such as
ORMLite, remained unsplit.

3) Removed Java keywords - all Java keywords have been
discarded.

4) Removed comments - multi- and one-line comments
discarded.

5) Removed imports - all Java imports removed.
Incremental preprocessing means that for example in the 4th

iteration also Word split and Removed Java keyword have been
included. Another preprocessing of documents that applied to
all iterations was the removal of frequently occurring English
words using nltk library, such as and, a, the, etc. At the
same time stemming over the documents has been executed,
where inflected or sometimes derived words to their word
stem have been reduced, e.g. cars to car. The last step was to
remove words that occurred only once in the corpus of training
documents to eliminate their negative impact on results.

C. Model training
Creating a bag-of-words representation in the form of a

dictionary (id + word pair) and creating a corpus of sparse
vectors was relatively easy using the functions of gensim. As
mentioned in the Section II, choosing the right number of
topics is a much bigger challenge. Since the number of topics

is dependent on the nature of the documents we searched for
the highest coherence value for each iteration and project.

Training a large number of models is very time consuming
task so in the early stages of the experiment we tried to obtain
approximate range to try in. After multiple tests we decided
to calculate coherence values from 7 to 50 for each model,
project and iteration, and the model with the highest value
has been chosen for the analysis.

To train the LSA model only the necessary parameters were
supplied - number of topics, dictionary (BoW) and corpus (of
vectors). For the LDA model training we also set the alpha
= auto parameter which means the model learns asymmetric
prior from provided corpus. From alpha attribute LDA model
computes theta that decides how the topic distribution is
drawn. The last special parameter set for the LDA model was
passes = 20 which express the number of passes through the
corpus during training. In terms of statistics, more training
means statistically more accurate results.

D. Evaluation of document similarity
When using LSA or LDA we focused on a single aspect of

possible similarities, i.e. on apparent semantic relatedness of
their texts (words), just a semantic extension over the boolean
keyword match. Modern search engines also take into account
random-walk static ranks, hyperlinks, etc. Gensim basically
uses cosine similarity [14] to determine the similarity of two
vectors and it is a standard measure in Vector Space Modeling.

The search query was made up of the content of a
test class. We created bag-of-words for each document (test
body) and converted it to the corresponding LSI/LSA space.
Subsequently, an index has been created from the trained
model against which the query was evaluated. Similarities
to all production classes were calculated and we obtained
the result as (document no, similarity value) pairs where
similarity value 2 h�1, 1i. The greater similarity value the
more similar document. Every document no has been paired
with value stored in a relation database created during training
document preparation to identify particular production class.

IV. RESULTS

Altogether we analyzed 2221 production and 168 test
classes in five projects (see Table II). In five iterations of
document preprocessing a total of 1,093,730 similarity results
between the tests and the production source code have been
obtained. In the Table II also statistics of mean search time
in prepared index are presented, as can be seen, searching in
LDA index is mostly a little bit faster.

A. Optimal topic number and train times
Model training lasted the longest time especially because

of searching for the optimal topic number. The tests were
performed on 12-core Intel Core i7-5820K CPU with 12GB
RAM and Debain GNU/Linux 9 installed. Nevertheless, anal-
ysis was performed in one thread only to simulate the use in
real environment, e.g. in the background of IDE. The average
search times for the highest coherence value can be seen in the

M. Madeja and J. Porubän · Accuracy of Unit Under Test Identification Using Latent Semantic Analysis and Latent Di...

– 250 –

TABLE II
GENERAL DOCUMENT STATISTICS IN ANALYZED PROJECTS.

Project Number of files Mean search time in index
(1 query)

prod. tests LSA LDA
1 plaid 679 39 49.73 ms 43.97 ms
2 ExoPlayer 954 53 78.52 ms 88.33 ms

3 Android-Clean
Architecture 99 17 7.65 ms 3.53 ms

4 shadowsocks-
android 157 6 11.67 ms 10.00 ms

5 iosched 332 16 18.89 ms 13.33 ms

Table III. The differences in individual LDA iterations were
minimal, i.e. in tens of seconds, with the LDA model the
differences were even a few minutes. The greatest decrease
of training time in a particular NLP model was recorded in
the 4th iteration when comments were removed. By removing
them a lot of the training data have been lost so finding the
best coherence value in the 4th iteration was faster: 2.17 times
for LSA and 2.83 times for LDA. Despite the increased speed
a large amount of potentially natural text in the source code
has been lost.

TABLE III
AVERAGE TIMES OF SEARCHING BEST COHERENCE VALUES PER PROJECT

IN MINUTES.

Project # 1 2 3 4 5
LSA 3.96m 4.46m 0.97m 2.03m 1.36m
LDA 21.31m 32.66m 2.26m 6.84m 7.18m

- to identify particular project pair with Table II.

To answer RQ1 the Table IV was created. As can be seen
the mean value for LSA is relatively stable. Although the
maximum deviation of the LSA value is 40, this situation
occurred in only one case, i.e. it was just an exception that
could be neglect. For the source code analyses using the LSA
model it is therefore possible to use a relatively stable value
of topic numbers in the range 7–10.

TABLE IV
TOPIC NUMBER MODE VALUE, TOPICS NUMBER DIFFERENCES AND

MODEL TRAINING TIME WITH BEST COHERENCE VALUE PER PROJECT.

Subject Metric Model Project #
1 2 3 4 5

Topic No. mode LSA 7 7 7 10 10
LDA - - 14 12 19

Topic
number
difference

min LSA 0 0 0 0 0
LDA 1 1 0 0 0

max LSA 1 6 40 6 5
LDA 11 20 25 17 23

Best model
train time
(s)

min LSA 0.09 0.14 0.02 0.03 0.03
LDA 8.92 11.27 1 2.88 3.82

avg LSA 0.14 0.19 0.02 0.04 0.05
LDA 12.35 24.31 1.29 4.27 5.3

max LSA 0.2 0.3 0.02 0.05 0.08
LDA 17.86 44.74 1.5 8.37 7.23

- to identify particular project pair with Table II.

When using LDA the selected topic numbers were very
diverse as the model is less stable. This can be obtained in

multiple model training with the same data when the results
vary slightly. That’s why topic numbers are more diverse
than in LSA. Most often the topic number for a project was
in similar values and in the difference range of 10 units.
However, the differences between the particular projects were
large and based on this data it is not possible to determine the
recommended topic number for LDA.

B. Accuracy of UUT identification

Since we assume that manually identified UUTs are correct
it is possible to determine the accuracy of a particular model
based on the order of production class in the search result.
The Figure 1 shows the frequencies in the search queries for
manually labeled production classes as UUT.

As can be seen, LSA performed much better than LDA. The
LSA is based on the frequency of words in the documents
and as was found in [4], the words between the test and
UUT are very similar which positively influenced the result.
The accuracy of the LDA model was very low, in the first
five results the correct UUT appeared only 2 times. Although
the LSA achieved 82 correct UUTs in the first five results
for all iterations it is still only 13.33% success rate which is
considerably inadequate. In response to RQ2 from our results,
only 5.20% of UUTs were marked correctly (all iterations) and
solely by the LSA method. In the results it is necessary to take
into account the fact that for the 6 test classes, which tested
multiple production classes at once, the most tested class was
chosen as the correct UUT (discussed in Section III).

A more detailed look at the best search results in each
iteration is needed to respond the RQ3 (see Table V). As
can be seen, word split and removal of java keywords (I2 +
I3) has the greatest impact on the accuracy of the results. Our
expectation was that when comments are removed the results
will get worse because there is a potential for sole natural
language in the comments. In the Table V it can be seen that
removing comments (I4) and imports (I5) had a negligible
impact on accuracy. It also shows that the meaning in the code
is most often expressed directly in the names of the identifiers,
i.e. class, methods and variables names. Using word splitting
were obtained the most accurate results, it was the fastest
iteration in terms of model training, finding the best coherence
value and search in the index (Table II).

TABLE V
POSITION FREQUENCY FOR FIRST 5 POSITIONS OF ANALYZED MODELS.

Itera-
tion

Position frequency in the search
LSA LDA

1 2 3 4 5 ⌃ 1 2 3 4 5 ⌃
I1 1 1 1 1
I2 4 1 3 5 13
I3 10 8 2 4 1 25 1 1
I4 9 6 4 1 2 22
I5 9 6 2 3 1 21
⌃ 32 22 11 13 4 0 0 2 0 0

2019 IEEE 15th International Scientific Conference on Informatics

– 251 –

Fig. 1. Position frequency of manually identified UUT for LSA and LDA models.

C. Detected errors of manual identification

In the experiment, we unexpectedly found that 8 classes
manually labeled as UUT were not in the corpus. Manual
testing was done in Android Studio IDE where we used
references created directly by IDE. After a more detailed
analysis we found that production classes that were not in
the corpus were incorrectly labeled. Incorrect identification
was due to references to generated source code that were
not present in the file system of the project without run. The
method can be therefore used to prevent such errors.

V. THREATS TO VALIDITY

Comparison the accuracy of LSA and LDA was relied on
the fact that the manual identification of UUTs was performed
correctly. If an error in manual identification happened this
could have a negative effect on the results reported in this
paper. The analysis was performed on only 5 popular Android
projects and no other projects were included, e.g. less popular,
proprietary, etc. At the same time, projects in other languages
have not been analyzed and a particular language can affect
the corpus of words by using naming conventions or language
syntax.

While the LDA method is more accurate than the LSA
(claim from the official description of the method, not from
our results), on the other hand, this method also shows slight
differences in document comparisons when training the LDA
model multiple times with the same data, indicating some
inaccuracy but statistically friendly.

The preprocessing of documents (the garbage in, garbage
out idiom) has also a huge impact on the results. How to
prepare source codes for such analysis was also one of the
research questions of this paper. There exist a thread to validity
because not all possible document preparation could be tried
out.

As mentioned in Section II the choice of topics number
also has a big impact on the accuracy of the methods. Despite
finding the best value for this parameter a search range of 7
to 50 may not be sufficient. Also the use of coherence value
may not be reliable at all times and there is no general rec-
ommendation on how to accurately determine this parameter,
so there is no guarantee that the best values have been chosen
with respect to the input data.

VI. RELATED WORK

The most similar research on improving of program compre-
hension was done by Maletic et al. [15], [16]. In their conclu-
sions they argue that the LSA model can assist in supporting
some of the activities of the program’s comprehension process.
However, they only analyzed one project in C, in our case a
larger sample and Java and/or Kotlin languages are considered.
They analyzed 269 files, we analyzed on a sample of 2221 files
in all projects without 168 test files used as queries on index.
They created code clusters of similar files trying to make it
easier for the programmer to find related parts of the program.
In our case we focus on the relationship between the test and
the production class which can even be written in another
language (e.g. tests in Java, production code in Kotlin; see
plaid project) and assume that the UUT test will have more
common vocabulary as 2 different classes.

Another type of research was performed by Thomas et
al. [17], [18] in 2014 who mined software repositories us-
ing topic models to simplify the understanding of software
changes during software evolution, especially for stakeholders.
Although their experiments have not been verified on real
stakeholders the results show that extraction of topics is
sufficient and should therefore have a positive impact on
simplification of understanding. In our research we focus more
on developers, analyzing the source code and relationships
within it.

Asuncion et al. [19] proposed an automated technique
that combines traceability with topic modeling. They record
traceability links during the software development process and
learns a probabilistic topic model over different artifacts. From
collected data they are able to categorize artifacts and create
topical visualisations of particular system. They implemented
several tools that support data collecting during software evo-
lution. In our case, we are still in the early stages, so we found
out whether it is beneficial to look for similarities between the
test and the production code using NLP techniques.

VII. CONCLUSIONS AND FUTURE WORK

In this paper the use of 2 NLP methods for UUT detection
in popular open-source Github projects is discussed. Previous
research shows that using these methods for source code

M. Madeja and J. Porubän · Accuracy of Unit Under Test Identification Using Latent Semantic Analysis and Latent Di...

– 252 –

analysis can positively affect the program comprehension of
developers.

Five popular Android projects were used for the analysis
which included 131 test and 2221 production classes in total.
In experiment Latent Semantic Analysis and Latent Dirichlet
Allocation models have been used which are able to evaluate
the similarities between documents. The source code of the
production classes was used to train the models and the content
of the test classes were used for search queries. In the paper
is described how to find the best value of topic number. The
main objective was to find out how exactly these models
cans identify unit under test against manual identification.
The experiment was conducted in five iterations and for every
iteration training and search documents have been modified
in different ways to determine how to preprocess source code
documents for these models to get more accurate results .

It was found that a range of topic number from 7 to 10 is
suitable for the LSA model and the choice of topic number
was very varied for the LDA model, so a generally sufficient
value could not be found. The accuracy of the LDA model
was only 5.20%, after taking into account the small deviation
only 13.33% records were found in the top five search results.
The accuracy of the LDA model is almost zero, so it is not
at all suitable for UUT identification. The fact that the LSA
model was more successful in the experiment corresponds to
the results of our previous research [4] that the vocabulary
used in the test and UUT was often similar. The LSA method
could therefore be a partial complement for more accurate
UUT identification but not absolutely reliable.

The best results in terms of searching for the best co-
herence value, model training time, searching for similarity
and UUT identification were recorded for 3rd iteration with
the accuracy of 7.63%, taking into account the deviation of
up to 5 records 19.08%. The mentioned iteration included:
removing new lines; splitting words using camelCase and
snake case convention; removing Java keywords; removing
English general words; stemming. At the same time, the class
lookup notified us to 8 mislabeled UUTs during manual testing
in which dynamically generated classes were identified as
UUTs.

Despite the considerable failure of the methods the experi-
ment also needs to be performed outside of Android projects
and on a different sample of projects, e.g. in terms of length
of maintenance, number of tests, language, etc. For example
Gherkin which contains more of natural text the results could
provide better results. In the future we will also look at com-
paring the results with other UUT identification techniques,
e.g. observation of code co-evolution, helper methods, or
naming conventions.

ACKNOWLEDGMENT

This work was supported by project VEGA No. 1/0762/19:
Interactive pattern-driven language development.

REFERENCES

[1] C. D. Manning, C. D. Manning, and H. Schütze, Foundations of
statistical natural language processing. MIT press, 1999.

[2] A. Reddy et al., “Java™ coding style guide,” Sun MicroSystems, 2000.
[3] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Mining java class

naming conventions,” in 2011 27th IEEE International Conference on
Software Maintenance (ICSM), Sep. 2011, pp. 93–102.

[4] M. Madeja and J. Porubän, “Tracing naming semantics in
unit tests of popular github android projects,” vol. 74, 2019.
[Online]. Available: https://www2.scopus.com/inward/record.uri?
eid=2-s2.0-85071071510&doi=10.4230%2fOASIcs.SLATE.2019.3&
partnerID=40&md5=6f5044423719630d3eaa7ed15b351def

[5] B. McGlauflin, Java Unit Testing Best Practices: How to Get
the Most Out of Your Test Automation. DZone Technical
Library, 05 2019. [Online]. Available: https://dzone.com/articles/
java-unit-testing-best-practices-how-to-get-the-mo

[6] W. B. Croft, D. Metzler, and T. Strohman, Search engines: Information
retrieval in practice. Addison-Wesley Reading, 2010, vol. 520.

[7] D. Hiemstra, “A probabilistic justification for using tf×idf term
weighting in information retrieval,” International Journal on Digital
Libraries, vol. 3, no. 2, pp. 131–139, Aug 2000. [Online]. Available:
https://doi.org/10.1007/s007999900025

[8] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American society for information science, vol. 41, no. 6, pp. 391–407,
1990.

[9] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[10] T. Cvitanic, B. Lee, H. I. Song, K. Fu, and D. Rosen, “Lda v. lsa: A
comparison of two computational text analysis tools for the functional
categorization of patents,” in International Conference on Case-Based
Reasoning, 2016.

[11] J. H. Lau, D. Newman, and T. Baldwin, “Machine reading tea leaves:
Automatically evaluating topic coherence and topic model quality,” in
Proceedings of the 14th Conference of the European Chapter of the
Association for Computational Linguistics, 2014, pp. 530–539.

[12] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. Valletta, Malta: ELRA, May
2010, pp. 45–50, http://is.muni.cz/publication/884893/en.

[13] R. Řehůřek, About Gensim, 07 2019. [Online]. Available: https:
//radimrehurek.com/gensim/about.html

[14] A. Huang, “Similarity measures for text document clustering,” in Pro-
ceedings of the sixth new zealand computer science research student
conference (NZCSRSC2008), Christchurch, New Zealand, vol. 4, 2008,
pp. 9–56.

[15] J. I. Maletic and A. Marcus, “Using latent semantic analysis to identify
similarities in source code to support program understanding,” in Pro-
ceedings 12th IEEE Internationals Conference on Tools with Artificial
Intelligence. ICTAI 2000, Nov 2000, pp. 46–53.

[16] J. I. Maletic and N. Valluri, “Automatic software clustering via latent
semantic analysis,” in 14th IEEE International Conference on Automated
Software Engineering. IEEE, 1999, pp. 251–254.

[17] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Studying
software evolution using topic models,” Science of Computer Program-
ming, vol. 80, pp. 457–479, 2014.

[18] S. W. Thomas, “Mining software repositories using topic models,” in
Proceedings of the 33rd International Conference on Software Engi-
neering. ACM, 2011, pp. 1138–1139.

[19] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software trace-
ability with topic modeling,” in 2010 ACM/IEEE 32nd International
Conference on Software Engineering, vol. 1. IEEE, 2010, pp. 95–104.

2019 IEEE 15th International Scientific Conference on Informatics

– 253 –

