
Computing and Informatics, Vol. 32, 2013, 1001–1030, V 2021-Jul-23

AUTOMATING TEST CASE IDENTIFICATION IN
JAVA OPEN SOURCE PROJECTS ON GITHUB

Matej Madeja, Jaroslav Porubän, Michaela Bač́ıková

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
e-mail: {matej.madeja}{jaroslav.poruban}{michaela.bacikova}@tuke.sk

Matúš Suĺır, Ján Juhár, Sergej Chodarev, Filip Gurbáľ

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
e-mail: {matus.sulir}{jan.juhar}{sergej.chodarev}{filip.gurbal}@tuke.sk

Abstract. Software testing is one of the very important Quality Assurance (QA)
components. A lot of researchers deal with the testing process in terms of tester
motivation and how tests should or should not be written. However, it is not
known from the recommendations how the tests are written in real projects. In
this paper, the following was investigated: (i) the denotation of the word “test”
in different natural languages; (ii) whether the number of occurrences of the word
“test” correlates with the number of test cases; and (iii) what testing frameworks are
mostly used. The analysis was performed on 38 GitHub open source repositories
thoroughly selected from the set of 4.3M GitHub projects. We analyzed 20,340
test cases in 803 classes manually and 170k classes using an automated approach.
The results show that: (i) there exists a weak correlation (r = 0.655) between
the number of occurrences of the word “test” and the number of test cases in a
class; (ii) the proposed algorithm using static file analysis correctly detected 95% of
test cases; (iii) 15% of the analyzed classes used main() function whose represent
regular Java programs that test the production code without using any third-party
framework. The identification of such tests is very complex due to implementation
diversity. The results may be leveraged to more quickly identify and locate test
cases in a repository, to understand practices in customized testing solutions, and

1002 M. Madeja, J. Porub�an, M. Ba�c��kov�a, M. Sul��r, J. Juh�ar, S. Chodarev, F. Gurb�a�l

to mine tests to improve program comprehension in the future.

Keywords: Program comprehension, Java testing, testing practices, test smells,
open-source projects, GitHub

Mathematics Subject Classification 2010: 68-04

1 INTRODUCTION

The development of automated tests in a software project is a time-consuming and
costly process, as it represents more than half of the entire development process [30].
The main aim of testing is to maintain the quality of the product and in addition to
that tests describe the expected behavior of the production code being tested. Years
ago, Demeyer et al. [6] suggested that if the tests are maintained together with the
production code, their implementation is the most accurate mirror of the product
specification and can be considered as up-to-date documentation. Tests can contain
many useful production code metadata that can support program comprehension.

Understanding the code is one of the very first tasks a developer must struggle
with before the implementation of a particular feature. When the product speci-
fication changes (e.g. the requirements for new features are added), the developer
must first understand them, then create his/her mental model [4] and finally, the
created mental model is expressed in a specific artifact — code implementation.
The problem is that two developers are likely to create two different mental models
for the same issue because according to Mayer [25] mental model may vary with
respect to its completeness and veridicality. A comprehension gap could arise when
one developer needs to adapt another programmer’s mental model from the code.

An assumption can be made that by using the knowledge about the structure
and semantics of tests and their connection to the production code, it is possible to
increase the effectiveness of program comprehension and reduce the comprehension
gap. This would be possible, for example, by enriching the source code with meta-
data from the tests directly into the production code, e.g. data used for testing, test
scenarios, objects relations, comments, etc. To achieve this goal, it is necessary to
know in detail how the tests are actually written and what data they use.

There exist many guidelines on how tests should be created. First, naming
conventions may aid the readability and comprehension of the code. According to
the empirical study by Butler et al. [3], developers largely follow naming conventions.
Our previous research [24] shows that there is a relation between the naming of
identifiers in the test code and the production code being tested. This indicates
that the relationship between the test and production code is not only at the level
of method calls, object instances, or identifier references, but also at the vocabulary
level, depending on the domain knowledge and mental model of a tester/developer.

Test Case Identi�cation in Java OS Projects on GitHub 1003

Furthermore, many authors [27, 22, 9] define best practices to simplify the test
with the benefit of a faster understanding of the testing code and the identifica-
tion of test failure. Some guidelines lead to avoiding test smells [34] because as
reported by recent studies [28, 31], their presence might not only negatively affect
the comprehension of test suites but can also lead to test cases being less effective in
finding bugs in the production code. All mentioned approaches are only recommen-
dations but do not really express how the tests are written in real projects. That
means we know how tests should be written, but we do not know how they are
written in practice. Many researchers have tried to clarify the motivation of writing
tests [23, 1, 19], the impact of test-driven development (TDD) on code quality [8, 2]
or the popularity of testing frameworks [35].

To reveal testing practices in real and independent projects it is necessary to find
a way to identify test cases in a project, without the time-consuming code analysis.
Much more important than the number of test cases is the information where they
are located. When a testing framework is used, the test identification is mostly
straightforward, e.g. by the presence of the framework imports. On the other hand,
to obtain a general overview of testing practices regardless of the used framework,
it is advisable to consider tests that do not use any third-party framework and can
be regarded as customized testing solutions. In most of the related works, tests
are identified by searching specific file and folder names, or some specific keywords.
Considering that these keywords usually included the word “test” and based on the
authors’ experience of Java test cases development, it can be assumed that there is a
relation between the word “test” and the number of test cases in a file. That means
searching for the “test” string could be beneficial for faster test case identification.
Based on the previous reasoning, this paper defines the following hypothesis and
research question:

H 1. There is a strong correlation (r =∈ (−0:8; 0:8)) between the number of occur-
rences of the word “test” in the file content and the number of test cases.

RQ 1. How many testing classes are implemented as customized testing solutions
without using any 3rd party framework?

This paper is focused exclusively on unit testing and analyzes 38 projects that
have been carefully selected (see section 3.4.2) from all GitHub projects with Java
as a primary language (most of the code written in Java). Section 2 presents the
current state and found gaps in the research. In section 3, the research method is
described, containing an examination of whether it is appropriate to search for tests
using the word “test” due to different natural languages of developers, an overview
of known testing frameworks, and a proposed algorithm for static code analysis to
automate the identification of test cases. Section 4 summarizes the results, threats
to validity are mentioned in section 5, and conclusions can be found in section 6.

1004 M. Madeja, J. Porub�an, M. Ba�c��kov�a, M. Sul��r, J. Juh�ar, S. Chodarev, F. Gurb�a�l

2 STATE OF THE ART

Many researchers examine software testing but we still know little about the struc-
ture and semantics of test code. This chapter summarizes the related work of soft-
ware testing from various perspectives.

Learning about real testing practices is a constant research challenge. The goal
of such research is mostly to find imperfections and risks, learn, and make rec-
ommendations on how to prevent them and how to streamline their development.
Leitner and Bezemer [21] studied 111 Java-based projects from GitHub that contain
performance tests. Authors identify tests by searching for one or more terms in
the test file name or for the presence of popular framework import, solely in the
src/test project directory. Selected projects were subjected to manual analysis,
in which they monitored several metrics. The most important result for this paper
was the fact that 103 projects also included unit tests, usually following standard-
ized best practices. On the other hand, the performance testing approach of the
same projects often appears less extensive and less standardized. Another finding
was that 58 projects (52%) mix performance tests freely with their functional test
suite, i.e., performance tests are in the same package, or even the same test file, as
functional tests. Six projects implemented tests as usage examples. Using a similar
approach [21], in our case by searching for the word “test” and searching for imports
of testing frameworks in all project’s Java files, we would like to analyze unit tests,
but with a careful selection from all GitHub projects at a specific time, resulting in
more relevant projects used for analysis.

Code coverage, also known as test coverage, is a very popular method for eval-
uating project quality. Ellims et al. [7] investigated the usage of unit testing in
practice in three projects that authors evaluated as well-tested. Statement coverage
was found to be indeed a poor measure of test adequacy. According to the findings
of Hemmati [12], basic criteria such as statement coverage are a very weak metric,
detecting only 10% of the faults. A test case may cover a piece of code but miss its
faults. According to Hilton et al. [13], coverage can be beneficial in the code review
process if a smaller part of the project is evaluated. By reducing coverage to a sin-
gle ratio of the whole project, much valuable information could be lost. Kochhar et
al. [17] performed an analysis of 100 large open-source Java projects showing that
31% of the projects have coverage greater than 50% and only 8% are greater than
75%.

Many experiments try to express the quality of tests by testing “mutants” [15],
i.e., by modifying a program in small ways to create artificial defects. According to
Gopinath et al. [10] mutants do not necessarily represent real bugs, therefore, they
are not able to relevantly evaluate the quality of the test suite nor to find relations
between the coverage and mutants’ reveal. However, there is a statistically signif-
icant correlation between code coverage and bug kill effectiveness of real software
errors (non-mutants) [18]. The quality of the test suite is influenced by the way the
mental model is expressed in the code, so examining real tests is more beneficial
instead of using mutants.

Test Case Identi�cation in Java OS Projects on GitHub 1005

The fact that unit tests are the most common test type in a project is confirmed
by Cruz et al. [5]: 39% of 1000 analyzed Android projects used unit tests. Another
finding was that frequently updated projects were more aware of the importance of
using automated tests than those updated several years ago. The adoption of tests
has increased over the last few years, so focusing on information mining from the
tests makes sense.

Another type of research was done by Munaiah et al. [26], who focused on the
assessment of GitHub projects. They proposed a tool that can be used to identify
repositories containing real engineered software projects. The aim was to eliminate
the repository noise such as example projects, homework assignments, etc. One of
the metrics they use for assessment is unit test occurrence in the project using test
ratio (number of source lines of code in test files to the number of source lines of
code in all source files) to quantify the extent of the unit testing effort. Package
imports of JUnit and TestNG frameworks were searched to identify tests in the
project. This method could be useful when looking for the occurrence of specific
testing frameworks in the code.

3 METHOD

First of all, it is necessary to find suitable projects containing test cases. Thus,
metadata of all GitHub open-source projects was obtained via GHTorrent [11] (sec-
tion 3.1) due to their high availability. GHTorrent collects projects’ metadata from
GitHub, one of the biggest project-sharing platform in the world. The experiment
was limited to projects with Java as the primary language. Searching for testing
frameworks’ imports [32] or files containing the word “test” in the filename [21] are
common test class identification techniques.

Because our main goal for the future is to improve production code comprehen-
sion from a particular test case, we go deeper in this study and try to identify specific
test cases (not only test classes), therefore, it is necessary to consider whether the
searching for the word “test” is appropriate. Keep in mind, that the aim is not to
count the number of test cases in a project. Otherwise, we could run tests via an
automated build tool (e.g. ant, maven, or gradle) and collect the number of tests.
In that case, the issue is that building such open-source projects often fail [33] and
we need to build every single project and run tests what is a time-consuming task.
In this paper, we try to count and especially find the location of such test cases.

Since the testing process can also be denoted by other keywords (e.g. verify1,
examine, etc.), an in-depth analysis (section 3.2) of testing process denotation in
various foreign languages was performed, which showed that searching for the word
“test” is suitable. Due to the limitations of the GitHub Search API, it was possible
to search only one word across all Github Java projects.

1 See Mockito verify() method used for soft assertions: https://javadoc.

io/static/org.mockito/mockito-core/3.11.2/org/mockito/verification/

VerificationMode.html

https://javadoc.io/static/org.mockito/mockito-core/3.11.2/org/mockito/verification/VerificationMode.html
https://javadoc.io/static/org.mockito/mockito-core/3.11.2/org/mockito/verification/VerificationMode.html
https://javadoc.io/static/org.mockito/mockito-core/3.11.2/org/mockito/verification/VerificationMode.html

1006 M. Madeja, J. Porub�an, M. Ba�c��kov�a, M. Sul��r, J. Juh�ar, S. Chodarev, F. Gurb�a�l

As the framework is assumed to influence developer thinking and test case im-
plementation, a list of 50 unit testing frameworks for Java (section 3.3) has been
created. Because the goal is to detect customized testing practices compared with
framework–based ones in existing projects, it is not possible to use an automated
method, and since it is not possible to manually analyze all GitHub projects, we
need to select the most suitable ones. Based on the meaning of the word “test” we
assume that there will be a correlation between the number of occurrences of the
word “test” (in file content or filename) and the number of test cases. Therefore,
three datasets were created using the searching GitHub API for (section 3.4):

1. the word “test” in filename,

2. the word “test” in file content,

3. frameworks’ imports in file content (38 frameworks).

Every single project was searched as mentioned above, 4.3 million projects in
total. It is possible to expect that the more occurrences of the word “test” in the
project, the more test cases will be present in it and the more we will learn from
it in the future. Therefore, projects with the highest occurrence of the word “test”
(in file content or filename) or with the highest occurrence of a specific framework’s
import were selected for manual analysis. By searching for “test” regardless of the
framework, we were also able to analyze testing practices without using any third-
party framework. Because GitHub contains many projects that are not relevant, e.g.
testing, homework, or cloned projects, rules for searching relevant projects have been
defined (section 3.4.2), resulting in a set of projects used for manual and automated
analysis. A script for automated analysis was created to partially automate the
identification of test cases (see section 3.5). All methodology details are described
in the following sections.

3.1 Data Source

To provide conclusions that are as general as possible, it would be ideal to analyze
all types of projects, i.e. proprietary and open source. Because of limited access to
proprietary projects, this experiment is focused exclusively on open source projects.
GitHub2 has become one of the most popular web-based services to host both pro-
prietary and mostly open-source projects, therefore, we can consider it a suitable
source of projects. It provides an open Application Programming Interface (API)3

allowing one to work with all public projects (with small exceptions).
To avoid the latency of the official API, the GitHub Archive project4 stores

public events from the GitHub timeline and publishes them via Google BigQuery.
Downloading via Google BigQuery is charged, therefore, GHTorrent [11] was used

2 https://github.com/
3 https://docs.github.com/en/rest
4 https://www.gharchive.org/

Test Case Identi�cation in Java OS Projects on GitHub 1007

instead, which provides a mirror of GitHub projects' metadata. It monitors the
GitHub public event timeline, retrieves contents and dependencies of every event,
and requests GitHub API to store project data into the database. That includes
general info about projects, commits, comments, users, etc. The study data mining
started in May 2019, therefore, the last MySQL dump5 mysql-2019-05-01 has been
used.

3.2 Denotation of the Word \test"

Leitner et al. [21] searched for tests only insrc/test directory and test classes
identi�ed manually. However, the tests can be placed in any project's directory
(e.g. Android6 usessrc/androidTest). Another approach is to search for\test"
string in �lenames as executed by Kochhar et al. [19] because they assumed that the
tests would be exclusively in �les containing the case-insensitive\test" string. As
in the previous case, best practices lead the developer to use \test" in the �le name,
but it is not mandatory. For this reason, the most accurate should be searching
for the word \test" in the �le content. Of course, �rstly it is necessary to consider
whether the word \test" is the right one for searching. Therefore, the meaning of
the word \test" using Google Translate7 was veri�ed in 109 di�erent languages (all
available by Google) as follows:

1. From English to foreign language and back to English
Using this method the most frequent8 meanings of the word \test" in a foreign
language were obtained. By translating them back to English we found out
which foreign language translations correspond to the original word \test".

2. From foreign language to English and back to foreign language
The opposite approach was used to �nd whether the string \test" has a meaning
in a particular foreign language. The word was translated into English and all
its meanings were veri�ed against the available translation alternatives in the
given language.

Multiple translations ensured that the correct meaning of the word in a particu-
lar language was understood. Using the 1st method it was found out that word sets
related to the testing process of di�erent foreign languages are mostly translated as
\test" in English, see Figure 1. This means that when a foreign developer would
like to express something related to testing (e.g. to write a test case), he/she will
use mostly the word \test". In this meaning, it is the �rst choice when searching
test cases by a string. Occasionally occurred meaning outside of testing area, e.g.,
essay, audition or ier . Because such meanings occurred only infrequently, they can

5 https://ghtorrent.org/downloads.html
6 https://developer.android.com/
7 https://translate.google.com/
8 Frequency determined by Google Translate service, indicates how often a translation

appears in public documents: 3 - high; 2 - middle; 1 - low frequency.

1008 M. Madeja, J. Porub•an, M. Ba�c��kov�a, M. Sul��r, J. Juh�ar, S. Chodarev, F. Gurb�a �l

be omitted. There were also 14 languages that did not include the word \test" in
their reverse translation at all, but its meaning was rather denotingexamination,
checkor quiz.

Fig. 1. Sum of reverse translation frequency of the word \test" in public documents of
di�erent languages.

A total of 44 languages used non-Latin charset. For these languages, the 2nd

approach did not make sense to use. For the remaining languages, the meaning was
completely identical in 43 languages and the same or similar meaning in 20 cases.
We found only 2 languages (Hungarian9 and Latvian10), in which the word \test"
has a completely di�erent meaning, such asbody, hew, or tool (nothing related to
testing). The analysis shows that the word \test" will refer to the testing process
in the code and the meaning can vary in very rare cases. Only the word \test"
will be searched for in this study because of the rate limitations of the GitHub API
(explained in section 3.4).

3.3 Java Testing Frameworks

The crucial question is whether developers are motivated to use the word \test" in
their code. The developer is often inuenced by a testing framework, which leads him
or her to di�erent habits. As a part of this study, we analyzed 50 Java unit testing
frameworks, extensions, and support libraries (see Table 1) to determine whether
the use of the word \test" during test implementation is optional, recommended,

9 https://translate.google.com/?sl=hu&tl=en&text=test
10 https://translate.google.com/?sl=lv&tl=en&text=test

Test Case Identi�cation in Java OS Projects on GitHub 1009

or mandatory. The list was created from di�erent sources, such as blogs, technical
reports, research papers, etc.

Because it is sometimes di�cult to �nd the boundary between unit and integra-
tion testing, the table lists frameworks supporting integration testing under theunit
testing category. Information about the �rst version and the last commit may be in-
teresting in terms of the framework lifetime and its occurrence in projects. Projects
marked asarchived or test generatorsin Table 1 were excluded from further analysis
for the following reasons: 1. archived projects usually had unavailable documenta-
tion or were never released; 2. test generators produce tests that are not based on
the programmer's mental model but are generated automatically (semi-randomly),
which is not interesting from the code comprehension point of view.

It can be seen that 37 of 50 frameworks require the word \test" as method/-
class annotation (@Test) or part of its name (testMethod , methodTest). The listed
frameworks are mostly extensions that depend on one of the base frameworks, such
asJUnit or TestNG. Di�erent versions of JUnit are listed separately because test la-
beling di�ers between them (annotations vs. method name format). A deeper anal-
ysis of frameworks' JavaDocs revealed that many frameworks include other classes,
methods, or annotations that include the word \test" in their names. Although the
use of these methods is not mandatory, it may support the search.

3.4 Searching Projects and Data Gathering

The whole process of data gathering can be seen in Figure 2. GHTorrent provided
140 million GitHub projects. From this set all deleted, non-Java, or duplicated
projects have been removed. After cleaning the initial data, a total of 6.7 million
projects were kept for further analysis.

Fig. 2. The GitHub data mining process for the study.

GHTorrent contained only basic metadata about the projects, which was not

1010 M. Madeja, J. Porub•an, M. Ba�c��kov�a, M. Sul��r, J. Juh�ar, S. Chodarev, F. Gurb�a �l

Table 1. Analyzed unit testing frameworks and extensions for Java.

Name Package for import
Framework

type
First

version
Last

commit
Must include

"test"

SpryTest N/A U N/A
N/A

(archived)
N/A

Instinct N/A B 24.01.2007
07.03.2010
(archived)

N/A

Java Server-Side
Testing framework
(JSST)

N/A U 17.11.2010
17.11.2010
(archived)

�

NUTester N/A U 05.02.2009
27.03.2012
(archived)

N/A

SureAssert N/A A 29.05.2011
04.02.2019
(archived)

N/A

Tacinga N/A U 14.02.2018
22.02.2018
(archived)

N/A

Unitils N/A U
29.09.2011

(v3.2)
08.10.2015
(archived)

N/A

Cactus org.apache.cactus U 11.2008
05.08.2011
(archived)

�

Concutest N/A U 30.04.2009
12.01.2010
(archived)

�

Jtest N/A G 1997
21.05.2019

(last release)
�

Randoop N/A G 23.08.2010 05.05.2020 �

EvoSuite N/A G
25.12.2015

(v1.0.2)
30.04.2020 �

JWalk N/A G 19.05.2006 14.06.2017 �

TestNG org.testng U
31.07.2010

(v5.13)
11.04.2020 �

Artos com.artos U 22.09.2018 19.04.2020 �
JUnit 5 org.junit U 10.09.2017 02.05.2020 �
JUnit 4 org.junit U 16.02.2006 10.04.2020 �
JUnit 3 junit.framework U N/A N/A �
BeanTest info.novatec.bean-test U 23.04.2014 02.05.2015 �
GrandTestAuto org.GrandTestAuto U 21.11.2009 22.01.2014 �
Arquillian org.jboss.arquillian U 10.04.2012 21.04.2020 �

EtlUnit
org.bitbucket
.bradleysmithllc.etlunit

U
02.12.2013
(v2.0.25)

04.04.2014 �

HavaRunner com.github.havarunner U 16.12.2013 08.06.2017 �
JExample ch.unibe.jexample U 2008 N/A �
Cuppa org.forgerock.cuppa U 22.03.2016 01.10.2019 �
DbUnit org.dbunit U 27.02.2002 24.02.2020 �
GroboUtils net.sourceforge.groboutils U 20.12.2002 05.11.2004 �

JUnitEE org.junitee U
23.07.2001

(v1.2)
11.12.2004 �

Needle de.akquinet.jbosscc.needle U N/A 16.11.2016 �
OpenPojo com.openpojo U 13.10.2010 20.03.2020 �
Jukito org.jukito U/M 25.01.2011 17.04.2017 �
Spring testing org.springframework.test M/U 01.10.2002 06.05.2020 �

Concordion org.concordion U/SbE
23.11.2014

(v1.4.4)
27.04.2020 �

Jnario org.jnario B 23.07.2014 �
Cucumber-JVM io.cucumber B 27.03.2012 04.05.2020 �
Spock spock.lang B 05.03.2009 01.05.2020 �
JBehave org.jbehave B 2003 23.04.2020 �
JGiven com.tngtech.jgiven B 05.04.2014 10.04.2020 �
JDave org.jdave B 18.02.2008 17.01.2013 �

beanSpec org.beanSpec B 15.09.2007
27.06.2014

(alpha)
�

EasyMock org.easymock.EasyMock M 2001 10.04.2020 �
JMock org.jmock M 10.04.2007 23.04.2020 �
JMockit org.jmockit M 20.12.2012 13.04.2020 �
Mockito org.mockito M 2008 30.04.2020 �
Mockrunner com.mockrunner M 2003 16.03.2020 �

PowerMock org.powermock M
28.05.2014

(v1.5.5)
30.03.2020 �

AssertJ org.assertj A 26.03.2013 05.05.2020 �
Hamcrest org.hamcrest A 01.03.2012 06.05.2020 �
XMLUnit org.xmlunit A 03.2003 04.05.2020 �

Legend: U { unit; B { behavioural; A { assert; M { mock; G { generator;
SbE { speci�cation by example

Test Case Identi�cation in Java OS Projects on GitHub 1011

su�cient for our needs. Given the meaning of the word \test" (see section 3.2)
we searched for it across all projects. The GitHub API provides a code search11

endpoint, which index only original repositories. Repository forks are not searchable
unless the fork has more stars than the parent repository. If the project has been
detected as deleted, private, or blocked by GitHub during querying code search, it
has been not considered. Finally, a total of 4.3 million projects were included. For
each project, two requests to the GitHub code search API were called, as presented
in Table 2. The GitHub code search API had the following limitations:

ˆ up to 1,000 results for each search;

ˆ up to 30 requests per minute (authenticated user);

ˆ global requests rate limited at 5,000 requests per hour;

ˆ only �les smaller than 384 KB and repositories with fewer than 500,000 �les are
searchable.

Table 2. The GitHub API requests used to search the string\test" in a project.

Search\test" in Example request at https://api.github.com/search/code

Java �les content ?q=test+in:file+language:java+repo:apache/camel
Java �lenames ?q=filename:test+language:java+repo:apache/camel

3.4.1 Code Search Strategy

GitHub indexes only the default branch code (usuallymaster), so the whole analysis
was performed only using the default branch. The string \test" can also be a part of
other words, e.g.fastest , lastest , thisistest framework. There exist 532 such words
containing \test" 12 in total. To avoid inaccuracies when searching for a word of
the selected string, false positives must be excluded from the search. When using
regular GitHub search, the search term will appear in the results when driven by
the following rules:

ˆ string uses camel case convention without numbers13, e.g.,myTest,

ˆ string uses snake case convention, e.g.,mytest , test 123;

ˆ string includes a delimiter or special character (space, ., #,$, @, etc.), e.g.,
test.delimiter , @Test;

ˆ search is case insensitive, e.g.Test sentence , test sentence .

11 https://docs.github.com/en/rest/reference/search
12 https://www.thefreedictionary.com/words-containing-test
13 Numbers can be used, but they are not considered as individual words, e.g.123Test

or test123 will not be found.

1012 M. Madeja, J. Porub•an, M. Ba�c��kov�a, M. Sul��r, J. Juh�ar, S. Chodarev, F. Gurb�a �l

GitHub considers as Java language �le any �le with.java or .properties ex-
tensions. The same search rules apply to both search types: �le content and �lename
search. Obviously, according to the above rules, GitHub search automatically �lters
the results, therefore, unwanted words containing the string \test" do not appear in
the results, but neither the wordstesting or testsAllMethods will be matched.

3.4.2 Selection of Relevant Projects

When searching for di�erent testing types, the e�ort is to go through as many
projects as possible. Because GitHub contains millions of repositories, it is a chal-
lenge to choose the projects that can be the most instructive and �lter out irrele-
vant ones. To make the selection as objective as possible, we planned to usereaper
tool [26], which can assess a GitHub repository in collaboration withGHTorrent
using project metadata and code: architecture, community, continuous integration,
documentation, history, issues, license, and unit testing. By evaluating all these
metrics (see [26] for details), reaper tags a particular repository as a real software
project and thus exclude example projects, forks, irrelevant ones, etc.

Many assessment attributes of thereaper tool14 require project �les to be avail-
able, so each project needs to be cloned or downloaded as an archive. For large
projects, it can be gigabytes of data and the size of the project subsequently a�ects
the length of the analysis. To �nd out whetherreaper will be bene�cial for our study,
a manual analysis of 50 projects was performed and the results were compared with
the evaluation by reaper. All available evaluation attributes were selected except for
unit tests assessment because it was limited toJUnit and TestNG frameworks. The
thresholds and weights of particular attributes de�ned by the developers of the tool
were preserved because these values were considered empirically con�rmed.

Because we want to select a sample of projects from which we would learn the
most, projects with the highest number of �les containing the word \test" in its
body and �lename were selected for the comparison. The same attributes as used
by the reaper were taken into account in the manual evaluation, but the relevance
of the project for this study was assessed by an observer. Evaluation of 50 projects
using the reaper tool took 10 days, with the most time being spent on evaluating
the project architecture. Many repositories with the highest \test" presence in
�le content or �lename were actually identi�ed as Subversion(SVN) mirrors15 by
manual analysis and because there were multiple copies of the same code (caused by
the SVN's branching style), the projects were not relevant, but thereaper assessed
such projects as suitable. According to this signi�cant issue, important projects
could be lost by assessing project in an automated manner, so it was concluded that
it is more e�cient to select projects manually driven by the following rules, inspired
by existing research:

14 https://github.com/RepoReapers/reaper
15 e.g. https://github.com/zg/jdk , https://github.com/dmatej/Glassfish ,

https://github.com/svn2github/cytoscape

Test Case Identi�cation in Java OS Projects on GitHub 1013

ˆ Priority was given to projects with the highest number of the word \test" in
the project (in �le content and �lename). According to [29] we can expect the
presence of tests in popular projects. If it is assumed that the word \test"
will be correlated with the number of test cases in the project, large and long
maintained projects are expected, which authors consider the best sample for
the study.

ˆ History , as evidence of sustained evolution. Projects under 50 commits were
excluded (inspired by thereaper) because they represented small or irrelevant
projects. Those projects that contained a large number of commits (more than
1 000 per day), considered committed by a robot, were also excluded.

ˆ Originality was evaluated by comparing thereadme�le for similarities in other
repositories. By such comparison, it is possible to detect clones and similar
repositories [36]. Jiang et al. [14] found that developers clone repositories to
submit pull requests, �x bugs, add new features, etc. The problem is that
developers often do not create forks but project clones (a manual copy of a
project), but readme�le is often unchanged.

ˆ Community , as evidence of collaboration, was assessed by the number of con-
tributors in the project. The more developers participate in the project, the
more likely it is that the (testing) code will be written in a di�erent style.

3.4.3 Searching Java Testing Frameworks

We were inspired by the work of Stefan et al. [32], who searched for Java performance
testing frameworks imports to assess performance testing practices. In our work we
are interested in the impact of testing frameworks on test writing, so we also searched
for imports of all testing frameworks in Table 1 (excluding generators and archived
projects).

Using the search for imports we obtained projects with di�erent testing frame-
works. Only projects that contained the word \test" in the Java �le body at least
once were queried. Because there was a large number of requests (37 per single
project), the project set was limited to 500,000, ordered by the number of Java �les
containing the word \test" in its body, using the following request:

https://api.github.com/search/code?q="org.testng"+in:file+language:java+repo:apache/camel

For each testing framework, we created a separate list of projects, sorted by the
occurrence of the word \test" in the project, to �nd projects with a high number of
test cases if possible. Original repositories of the searched framework were removed
from the analysis (e.g. when searching for JUnit, the original JUnit framework
repository was excluded). Subsequently, the selection of relevant projects was per-
formed according to the steps mentioned in the section 3.4.2. For some frameworks,
e.g. JExample16, which were created as a part of the research [20], no software

16 https://github.com/akuhn/jexample

1014 M. Madeja, J. Porub•an, M. Ba�c��kov�a, M. Sul��r, J. Juh�ar, S. Chodarev, F. Gurb�a �l

repositories with business focus were found and as a consequence, it was necessary
to include also example, homework, or cloned/forked ones, if the original one was
not publicly available.

3.5 Repository Analysis

Three di�erent data sets were received by searching via GitHub API: 1. the word
\test" in �lename, 2. the word \test" in �le content, 3. frameworks' imports in �le
content. The �rst four relevant and top projects (highest \test" or framework's
import string occurrence) were manually investigated from each set to �nd out
the test writing practices. The projects were cloned17 and to keep the consistency
between the \test" search and the manual analysis, the project was reverted to the
timestamp of GitHub API download using the following command:

git checkout �git rev-list -n 1 --before="<DOWNLOADED_AT>" "<DEFAULT_BRANCH>"�

For each project, all �les with the word \test" in content or �lename, or frame-
work's import in �le content has been selected as possible option for manual analysis.
The project �les that contained the largest occurrence of the word \test" and frame-
work's import in their content (expected a higher number of tests) were analyzed
�rst. During the investigation of tests from di�erent authors and projects, we cre-
ated an automated supportive method for detecting the number of test cases in a
�le. It does not require compiling the code, such as for computing code coverage, or
building abstract syntax tree (AST), e.g. indexing in an IDE.

Regardless of the framework, it is advisable to investigate the count of the
following attributes of a source �le containing the word \test":

1. Annotations @Test | very popular mostly thanks to JUnit and TestNG.

2. Methods containingtest in the beginning of the name| best practices leads
developers to use this convention (also for historical purposes).

3. Methods containingTest in the end of the name| an alternative of previous
one.

4. Public methods| possibly all public methods of a test class can be considered
as tests.

5. Occurrence ofmain | customized testing solutions are executed viamain() .

6. File path containing test | should relate to testing.

7. Classes containing$ in the name | the character $ in a class name mostly
denotes a generated code18 that should not be analyzed.

8. Total number oftest occurrence in �le content | to reveal the relation between
executable test cases and the word \test" presence in the content.

17 git clone
18 https://docs.oracle.com/javase/specs/jls/se11/html/jls-3.html#jls-3.8

Test Case Identi�cation in Java OS Projects on GitHub 1015

All listed metrics (counts of occurrence in a �le) were saved for each analyzed
�le. The pseudocode for collecting mentioned metrics can be seen in Listing 1
(implementation available at GitHub19). The presented algorithm is partly the
result of the study because it was created in parallel with the manual analysis. The
manual analysis complements the algorithm implementation and vice versa. This
algorithm was used to evaluate the test identi�cation for each Java �le containing
the word \test". Subsequently, the automated identi�cation was checked during
the manual analysis to determine the correct number of test cases and the metric
used for the calculation (e.g., the number of annotations and public methods can be
the same, but the relevant number of tests can only come from one of them). It is
necessary to identify the number of particular test cases to link a speci�c test case
with the unit under test (UUT) and its speci�c method. Each test case is likely to
represent a unique use case and thus unique information to enrich the production
code.

Gathered metadata about test case identi�cation were analyzed from di�erent
perspectives. Test classes with the highest number of the following attributes were
analyzed: 1.@Testannotations, 2. public methods with names starting withtest ,
3. public methods with names ending withTest , 4. main method, 5. word \test"
occurrence. For framework{dependent searches there was an additional analysis of
�les with the highest framework import occurrence in the content.

3.6 Hypothesis and Research Question Evaluation

Our null and alternative hypotheses are:
H 1 null : There isnot a strong correlation (r 2 (� 0:8; 0:8)) between the number

of occurrences of the word\test" in the �le content and the number of test cases in
projects with high number of \test" occurrence.

H 1 alt : There is a strong correlation (r =2 (� 0:8; 0:8)) between the number of
occurrences of the word\test" in the �le content and the number of test cases.

The method of calculating standard Pearson's correlation coe�cient [16] was
used to con�rm or reject H 1 . The correlation coe�cient was calculated as follows:

r =
P

(x � mx)(y � my)
p P

(x � mx)2
P

(y � my)2
(1)

wheremx is the mean of the vectorx (number of \test" occurrences in �le) and my

is the mean of the vectory (number of identi�ed test cases in �le). We will consider
the H 1 null as accepted whenr 2 (� 0:8; 0:8), as only absolute correlation higher
than 0.8 is commonly considered signi�cant.

To addressRQ 1 , a class/�le will be considered a customized testing solution
if the following conditions are met:

19 https://github.com/madeja/unit-testing-practices-in-java/blob/master/
AnalyzeProjectCommand.php

1016 M. Madeja, J. Porub•an, M. Ba�c��kov�a, M. Sul��r, J. Juh�ar, S. Chodarev, F. Gurb�a �l

1 Algorithm predictTests(filePath)
2 Input: File path to analyze.
3 Output: List of statistical data
4

5 content := load filePath content and remove comments
6 nonClassContent := remove all class content, keep only content outside of it
7 such as imports or class annotations
8 classContent := remove all content outside of the class block and keep only
9 first-level methods without body using /\{([^\{\}]++|(?R))*\}/

10

11 annotations := matches count of regex /@Test/ in classContent
12 startsWithTest := matches count of regex
13 /public +.*void *.* +[Tt]est[a-zA-Z\\d$_]* *\(/
14 in classContent
15 endsWithTest := matches count of regex
16 /public +.*void *.* +[a-zA-Z$_]{1}[a-zA-Z\\d$_]*Test *\(/
17 in classContent
18 publicMethods := matches count of regex /public +.*void +.*\(/
19 in classContent
20 includesMain := matches count of /public +static +void +main.*\(/
21 in classContent
22

23 hasDollar := if $ in filename, then true, else false
24 testInPath := if "/test" in filePath, then true, else false
25

26 if TestNG import found in content, then
27 if @Test found in nonClassContent, then
28 testCaseCount := publicMethods
29 else
30 testCaseCount := annotations
31 else if JUnit4 import found in content, then
32 testCaseCount := annotations
33 else if JUnit3 import found in content, then
34 testCaseCount := startsWithTest
35 else if startsWithTest > 0, then
36 testCaseCount := startsWithTest
37 else if annotations > 0, then
38 testCaseCount := annotations
39 else
40 testCaseCount := 0
41

42 return annotations, startsWithTest, endsWithTest, publicMethods
43 includesMain, hasDollar, testInPath, testCaseCount

Listing 1: Pseudocode of the algorithm for gathering metadata and identi�ed number
of tests in a Java source �le.

ˆ must include actual tests of production code.

ˆ there is at least one occurrence of the word \test",

ˆ there is no framework import from Table 1,

ˆ �le contains main() function,

The conditions are based on Section 4.4.2 which shows that customized testing
solutions were mostly implemented as common java programs usingmain() function
without using any 3rd party framework import.

Test Case Identi�cation in Java OS Projects on GitHub 1017

4 RESULTS

Using the automated script all repositories' �les from Table 3 were processed, 38
repositories and 170,076 classes altogether, from which 803 classes and 20,340 test
methods were manually investigated. Some special practices in terms of the structure
of the testing code or the developer's reasoning were observed. The �rst 4 projects
from Table 3 represent repositories with the largest occurrences of the word \test"
in the �lename, another 4 in �le content and other repositories represent the top
import occurrence of a particular framework. The whole dataset of searching \test"
via GitHub API can be found at Zenodo20.

4.1 Accuracy of Automated Test Case Identi�cation

To evaluate the precision of the algorithm from Listing 1, results were compared to
manual test identi�cation of 20,340 test cases across all three datasets. Accuracy of
95.72% for test cases detection was achieved by automated identi�cation considering
only test methods, i.e., 95.72% of all test cases were correctly identi�ed. Consid-
ering all 28,975 methods of manually analyzed �les (with non-testing ones) a total
accuracy of 96.97% was achieved with the sensitivity of

Sensitivity =
true positives

true positives + false negatives
=

19600
19600 + 62

= 0:9968 (2)

and speci�city of

Specif icity =
true negatives

true negatives+ false positives
=

8498
8498 + 815

= 0:9125 (3)

Most false positives and false negatives occurrences were caused by customized test-
ing solutions, e.g., when tests were performed directly from themain() function by
calling methods of the class. If the naming conventions of the called (testing) meth-
ods were not governed by the principles of frameworks (e.g., prepending method
name with \test" or using public methods), not all test cases were detected in an
automated way.

4.2 Correlation Between the Number of the Word \test" and the Number
of Test Cases in a Class

The proposed algorithm was used to identify all tests in all Java classes of projects
from Table 3. The script was used for all Java �les that contained string\test" in
the �le content or the �lename (in total 170,076 �les). Figure 3 shows the correlation
with the linear regression line of the word \test" and the number of test cases in
a particular class. A standard Pearson's correlation coe�cient ofr = 0:655 was

20 https://doi.org/10.5281/zenodo.4566198

1018 M. Madeja, J. Porub•an, M. Ba�c��kov�a, M. Sul��r, J. Juh�ar, S. Chodarev, F. Gurb�a �l

Table 3. Statistics of the investigated repositories.

Repository Framework
Analyzed

classes
Analyzed

tests
Java

KLOC
TA

A M A M

openjdk/client testng, junit 30410 130 30410 1661 5149 20798
SpoonLabs/astor junit 30331 36 30331 1548 2338 13324
apache/camel junit 10438 81 10438 625 1240 6847
apache/netbeans testng, junit 13056 78 13056 1627 5009 11908
JetBrains/intellij-community testng, junit 20375 49 20375 4805 3842 13630
SpoonLabs/astor testng, junit 30331 44 30331 5883 2338 13324
corretto/corretto-8 testng, junit 13688 10 13688 1659 3638 10792
aws/aws-sdk-java junit 28574 18 28574 302 3680 20528
wildy/wildy arquillian 5109 24 5109 123 548 3553
eclipse-ee4j/cdi-tck arquillian 4758 30 4758 139 97 2748
resteasy/Resteasy arquillian 2821 13 2821 144 220 1675
keycloak/keycloak arquillian 1681 16 1681 104 396 1286
jsfunit/jsfunit cactus 222 13 222 125 21 142
bleathem/mojarra cactus 737 16 737 250 171 556
topcoder-platform

/tc-website-master
cactus 1635 8 1635 42 366 1199

apache/hadoop-hdfs cactus 325 4 325 20 101 282
zanata/zanata-platform dbunit 770 21 770 171 197 554
B3Partners/brmo dbunit 145 18 145 37 47 106
gilbertoca/construtor dbunit 145 18 145 64 24 53
sculptor/sculptor dbunit 153 11 153 101 26 103
geotools/geotools groboutils 3424 5 3424 5 1272 3659
notoriousre-i-d/ce-packager groboutils 107 11 107 75 46 91
tliron/prudence groboutils 16 2 16 3 13 11
MichaelKohler/P2 jexample 36 12 36 53 4 24
akuhn/codemap jexample 132 15 132 286 41 112
wprogLK/TowerDefenceANTS jexample 17 3 17 50 9 12
rbhamra/Jboss-Files needle 44 21 44 30 5 30
akquinet/mobile-blog needle 19 10 19 33 2 10
s-case/s-case needle 46 15 46 13 39 33
dbarton-uk/population-pie needle 7 6 7 16 1 4
abarhub/rss openpojo 26 2 26 3 6 20
BRUCELLA2

/Prescriptions-Scolaires
openpojo 25 19 25 40 10 18

jpmorganchase/tessera openpojo 382 8 382 12 45 234
tensorics/tensorics-core openpojo 161 3 161 1 24 85
orange-cloudfoundry

/static-creds-broker
jgiven 21 11 21 33 2 16

eclipse/sw360 jgiven 175 4 175 51 56 161
Orchaldir

/FantasyWorldSimulation
jgiven 54 13 54 198 7 37

kodokojo/docker-image-manager jgiven 11 5 11 8 3 8

SUM 170076 803 363730 20340 31033 127973

Legend: A { processed automated; M { investigated manually; KLOC { kilo of lines of code;
TA { average time of automated test case detection in ms.

reached (statistical signi�cancep = 0:0, rounded on 5 decimal places), that means
there is a weak correlation when considering absolute threshold� = 0:2 de�ned
in Section 3.6. Nevertheless, from the perspective of �nding projects containing
tests, this technique is bene�cial and can help future experimenters to �lter projects
containing tests much faster. Because projects have di�erent numbers of test classes
and use di�erent frameworks, the detailed ratio of the word \test" occurrence and

Test Case Identi�cation in Java OS Projects on GitHub 1019

test case presence per project can be found at GitHub21.

Fig. 3. Correlation of the word \test" presence and number of test cases for analyzed
classes by automated script.

Due to existing research [21] that identi�ed test �les using searching \test" in the
�le path, when limiting our results to �les containing \test" in the path (120,907 �les)
the correlation coe�cient of r = 0:6649 was reached. On the other hand, 49,169
classes with 3,855 test cases were discarded. Limiting results to �les containing
\test" in �lename (74,530 �les), we reached correlation coe�cient r = 0:7004 with
loss of 95,546 classes and 17,440 test cases. By any limitation the correlation did not
signi�cantly change, therefore, to �nd as many test cases as possible it is convenient
to search for the word \test" in the �le content.

Occurrence of the functionmain without the 3rd party testing framework (more
explained in section 4.4.2) was detected in 26,205 (15.41%) classes containing the
word \test" in their content. The proposed algorithm in section 3.5 successfully
identi�ed test cases in only 6% classes of this set. Becausemain tests make up a
fairly large proportion and the identi�cation of test cases is not clear, it is necessary
to investigate this testing style deeper in the future.

21 https://github.com/madeja/unit-testing-practices-in-java/blob/master/
correlation-boxplot.png

1020 M. Madeja, J. Porub•an, M. Ba�c��kov�a, M. Sul��r, J. Juh�ar, S. Chodarev, F. Gurb�a �l

H 1 There is a strong correlation (r =2 (� 0:8; 0:8)) between the number of oc-
currences of the word \test" in the �le content and the number of test cases.

We acceptH 1 null and rejectH 1 alt because only weak Pearson's correlation
coe�cient r = 0:655 was achieved in general. In some projects, when the cor-
relation was calculated for each project separately, a signi�cant correlation was
achieved but so far no relationship has been found concerning the framework,
the number of the word \test" presence in the content, or other dependencies.

4.3 E�ciency of the Proposed Automated Test Case Identi�cation

Executing a full code analysis, e.g. in an IDE, of a large project with thousands
of kilo of lines of code (KLOC), is a time-consuming task. Such example is the
project openjdk/client from Table 3. To get faster feedback about tests in a
project, the proposed algorithm was used for static source code analysis. Because
the proposed automated algorithm should run as a part of an integrated development
environment (IDE) extension in the future it should be fast enough. To emulate a
similar environment that a developer can use, a laptop with2.3 GHz Dual-Core Intel
Core i5 CPU and 8 GB 2133 MHz LPDDR3 RAM was used. In the table 3 can be
seen the average time (TA) of automated analysis executed 10 times. The average
time of execution was 158ms per KLOC, which authors consider as a satisfactory
response time in terms of user experience for use in an IDE extension.

4.4 Revealed Testing Practices

In related work (section 2) there are best practices that developers can follow and
therefore can be expected in the code. During the manual investigation of multiple
repositories containing tests, we identi�ed special testing practices used by devel-
opers, which are described in the following paragraphs. The listings that are given
as examples come from the analyzed repositories, but the code was simpli�ed for
presentation purposes. Code listings refer to GitHub22 repository of this paper.

4.4.1 Testing Using 3 rd Party Frameworks

Regular test. Tests that follow best practices and avoid test smells fall into this
category. They represent the most of occurrences in the projects and since these
approaches are already described in the available literature [27, 22, 9], this group
will not be given detailed attention. However, the basic aspect of such tests is that
information about context and evaluation are available directly in the particular test
method (considering also test setup, teardown, and �xtures), thanks to which the
test comprehension is straightforward.

22 https://github.com/madeja/unit-testing-practices-in-java

Test Case Identi�cation in Java OS Projects on GitHub 1021

Master test. This testing code style represents test classes which contain
only one executable test method (see GitHub23). JUnit will consider only theall()
method as a test case because it is annotated with@Testannotation. Other methods
are considered auxiliary ones. The problem with such a notation is the complexity
of test comprehension. If the test fails, the developer only has information that the
test case titled all failed but does not know what the test should have veri�ed,
what data was used, etc.

According to the best practices, it should be clear from the test name what the
test veri�es. In this context, from a semantic point of view, it is possible to consider
methods as test cases on lines 1-8 (here from L1-8). The mentioned methods are
crucial in terms of failure and understanding of the test, and from the method name,
it is also clear what the test veri�es. Another disadvantage of these test types is the
assertion roulette test smell [34] because iterations of the test over the input data
make it di�cult to determine which data caused the test failure and whether the
input data do not interfere with each other between the tests.

Reverse proxy test. If a separate test is written for each use case, the rec-
ommendations are met, but this does not mean that it will be easy to comprehend.
Some tests call one auxiliary method in multiple tests and the result is evaluated in
the auxiliary method. According to the test evaluation manner, they can be divided
into:

1. Result evaluation via method name(see GitHub24).

2. Result evaluation via internal object state(see GitHub25).

The 1st approach is much more di�cult to comprehend due to the high degree
of abstraction. It is not clear directly from the test method code (L6-8) what is
compared during the test because the input data are loaded from a �le determined
by the test method name (L3). In theJetBrains/intellij-community project,
from which the example is given, thedoTest() method is the general one and it
was necessary to investigate multiple classes to comprehend how tests are evaluated.
At the same time, too generic auxiliary method can result in thegeneral �xture test
smell.

The 2nd approach is similar to the previous one but uses the internal state of
an object (that is initialized before a particular test during test setup) or theenum
type with di�erent method implementations. The problem may arise when object
attribute or method input parameter change the control ow. If the same test is
called with di�erent object state or input data, the test logic does not change and
therefore it is the same test. However, if the control ow changes in the test, e.g. by

23 https://github.com/madeja/unit-testing-practices-in-java/blob/master/
examples/c_masterTest.java

24 https://github.com/madeja/unit-testing-practices-in-java/blob/master/
examples/c_reverseProxyMethod.java

25 https://github.com/madeja/unit-testing-practices-in-java/blob/master/
examples/c_reverseProxyObject.java

1022 M. Madeja, J. Porub•an, M. Ba�c��kov�a, M. Sul��r, J. Juh�ar, S. Chodarev, F. Gurb�a �l

some variable value, it can be considered as a separate test (di�erent ow, di�erent
test). If the same help method is called more than once, it may behave like 2 di�erent
test cases, which contradicts best practices and makes the comprehension di�cult.

Multiple test execution. Server-side applications test di�erent use cases,
which require an action after the execution of base functionality, e.g. whether the
right content is shown after main test execution (see GitHub26). Because of using
JUnit3 in the example, every public method prepended by \test" is considered as
test case, sotestEcho() is executed twice; as a single test case and as a part of
testA4JRedirect() .

4.4.2 Customized Testing Solutions

Custom testing practices are classic Java programs executable viamain() function,
whose task is to verify the functionality of the production code. Such tests are
often written due to the possibility of con�guring the execution via command line
parameters, which allows variability of test execution. On the other hand, tests
should not be so environmentally dependent that they need to be con�gured to such
an extent. The second reason for writing such tests is that they make the code with
a large number of test cases more readable. Test methods are called directly from
main() and, if necessary, also the environment setup is performed in this function.
The following ways of calling test methods and objects were observed (examples can
be found at GitHub27):

ˆ Calling methods one by one:all testing methods are manually called from
main() together with parameters.

ˆ Calling methods according to input data:by iterating the test data, speci�c tests
are called based on the current data.

ˆ Helper function that returns an array of test cases:the helper method returns an
array of instances created from abstract classes, whereas the abstract methods
(which represent test cases) are implemented during the instance creation. The
main() contains an iteration over the array of object instances.

ˆ Iterating values ofenum: similar to the previous one, but it iterates overenum
values. When creating theenum, the method of test class is implemented and
the data is set. The test class has its own implementation of a method and state
in each iteration.

ˆ Calling constructor: in the main function the testing class instance is created
and the tests are called from the constructor.

There is a problem of how to identify such tests using an automated way and
how to determine the number of tests in such a class. Themain() function also

26 https://github.com/madeja/unit-testing-practices-in-java/blob/master/
examples/c_multipleExecution.java

27 https://github.com/madeja/unit-testing-practices-in-java

Test Case Identi�cation in Java OS Projects on GitHub 1023

occurs in classic tests (e.g. to run test outside of IDE or without a build automation
tool28), e.g. based onJUnit or TestNG. The function can also be found in modi�ed
runners of testing frameworks. To clearly distinguish the presence of a customized
solution without any framework, it is possible to check the presence of the framework
import | if a class contains the main() function and an import together, it is a
runner or regular test based on the framework, not a customized solution.

Other interesting ways of writing customized tests were also observed. For exam-
ple, in the openjdk/client repository, there were tests for trichotomous relations
for which a custom@Testannotation was implemented (see GitHub29). The an-
notation is used to indicate the test and, at the same time, to de�ne the type of
comparison in the method (L1, L4). Thanks to the word \test" usage, it is possible
to detect the correct number of tests, in a similar way as forJUnit . In this example,
the impact of 3rd party framework on the developer's customized solution is visible.
There are many tests in the repository using standardized frameworks, therefore the
usage of@Testannotation is a logical way of de�ning a test case. Writing tests
manually using a framework would not be as e�ective and would be di�cult to com-
prehend. On the other hand, such tests in large iterations can easily give rise to the
assertion roulettetest smell, which makes it di�cult to identify a test failure.

While in the previous case the test was evaluated using asserts, some approaches
have their own error handling. E.g. in the same repository for allResourceBundle
classes, a helper test classRBTestFmwkhas been implemented, which represents a
custom framework and test classes inherit from it. The framework provides the pro-
cessing of themain() function parameters, performing tests, and processing results.
The test methods to be performed are de�ned as input parameters. The disad-
vantage is that when performing such tests, it is necessary to know the internal
structure of the class, at least method names that need to be performed.

In general, the following risks were observed by analyzing othermain testing
methods:

ˆ Execution interruption | If a test fails, execution may be completely interrupted
and no further tests will be performed (e.g. raised exception).

ˆ Failure identi�cation | Because testing is often performed repeatedly over dif-
ferent data, it can be di�cult to identify the exact cause of test failure and in
some cases may require debugging the test code.

ˆ Dependence| Tests often use the same sources or data for testing and may
a�ect the results of other tests. Also, the tests are often order-dependent and
the test order randomness was not found in any repository.

Occurrence of themain() function without any 3rd party testing framework was
detected in 26,205 (15.41%) classes containing the word \test" in their content. The

28 https://junit.org/junit4/faq.html
29 https://github.com/madeja/unit-testing-practices-in-java/blob/master/

examples/c_main1.java

1024 M. Madeja, J. Porub•an, M. Ba�c��kov�a, M. Sul��r, J. Juh�ar, S. Chodarev, F. Gurb�a �l

proposed algorithm in Section 3.5 successfully identi�ed test cases in only 6% classes
of this set. The set can contain not only testing code, but also a production one.
Because such classes make up a fairly large proportion and the identi�cation of test
cases is not clear due to the high diversity of writing such tests, it is necessary to
carry out an extensive study dealing solely with this issue, to �nd a way to precisely
identify such test cases.

RQ 1 How many testing classes are implemented as customized testing solu-
tions without using any 3rd party framework?

A total of 15% of classes were identi�ed as customized testing solutions.
The diversity of such tests is very high, therefore, future investigation is needed.
This high incidence is probably caused by the nature of big projects with a high
occurrence of the word \test" in �le content and it is assumed the use of 3rd

party frameworks should be more common in smaller projects.

5 THREATS TO VALIDITY

Internal validity: The study relied on GHTorrent databank and GitHub API
search algorithm to identify relevant projects. Because only projects with Java as a
primary language were selected, testing practices in projects, where Java was not a
major language could have been lost. Test classes that did not use the word \test" to
indicate a test case were also lost. Searching for test cases was based on best practices
and rules of the identi�ed frameworks, but there may still exist other ways of how
to identify them. The manual classi�cation was based on observers' experiences
and identi�cation of practices out of the generally known recommendations (best
practices, test smells, etc.).

Test case detection results were compared to manual ones with an accuracy of
96.97%. As stated, it is necessary to further investigate customized testing solutions
that use regular Java programs to test the production code. The implementation
of such programs is often diametrically di�erent and it is di�cult to identify test
cases. Real test cases were identi�ed by the script in 6% of classes containingmain()
function.

External validity: To provide generalizable results, 20k of test cases were ana-
lyzed manually and 170k by an automated way. Also, the meaning and occurrence of
the word \test" was analyzed for di�erent natural languages and test frameworks.
The results can be used to identify test cases in Java-based projects or projects
with a di�erent programming language with the usage of similar testing conven-
tions. Despite the presented observations, our �ndings, as is usual in empirical
software engineering, may not be directly generalized to other systems, particularly
to commercial or to the ones implemented in other programming languages.

Test Case Identi�cation in Java OS Projects on GitHub 1025

6 CONCLUSION AND FUTURE WORK

This paper presented an empirical study of Java open source GitHub projects to
better understand how to identify test cases and their exact location in the project
without the need for deep and time-consuming dynamic code analysis. An algorithm
based on searching the word \test" in the repository �les content or �lenames was
proposed and, at the same time, the unusual testing practices were investigated. In
total 20,340 test cases in 803 classes were investigated manually and 170k classes in
an automated way. We summarise the most interesting �ndings from our study:

ˆ There is not a strong correlation between the number of occurrences of the word
\test" and the number of test cases in a class.

ˆ Searching for the word \test" in the �le content can be used to identify projects
containing tests.

ˆ Using static �le analysis, the proposed algorithm can correctly detect 97% of
test cases.

ˆ Approximately 15% of the analyzed �les contains \test" in the content together
with main() function whose represent regular Java programs that test the pro-
duction code without using any third-party framework. The success rate of
identi�cation of such test cases is very low because of implementation diversity.

Several test writing styles were found and classi�ed, along with code samples of
the analyzed repositories. Possible code comprehension defects were also mentioned.
Based on these �ndings the following main contributions of this paper are concluded:

ˆ Possibility of fast and automated test case identi�cation together with the exact
location in the project.

ˆ Finding of correlation coe�cient r = 0:655 between the number of occurrences of
the word \test" and the number of test cases in a �le, which allows to threshold
projects or �les for similar analysis.

ˆ Overview of observed testing practices concerning the existence of customized
testing solutions with an emphasis on places in testing code usable for mining
information about the production code.

As future work, we plan to �nd a solution for accurate identi�cation of test
cases in customized solutions, probably based on training a machine learning model
with manually labeled test cases of such testing solutions. We believe that studying
testing practices can help comprehend the production code more easily. Gathered
data could be used for training a machine learning model to automatically recognize
tests by the structure and nature of the code. At the same time, we would like to
focus on mining information from tests that could support the production source
code comprehension and streamline the development process.

1026 M. Madeja, J. Porub•an, M. Ba�c��kov�a, M. Sul��r, J. Juh�ar, S. Chodarev, F. Gurb�a �l

7 ACKNOWLEDGEMENT

This work was supported by project VEGA No. 1/0762/19: Interactive pattern-
driven language development.

REFERENCES

[1] Beller, M., Gousios, G., Panichella, A., and Zaidman, A. When, how, and
why developers (do not) test in their ides. In Proceedings of the 2015 10th Joint Meet-
ing on Foundations of Software Engineering(New York, NY, USA, 2015), ESEC/FSE
2015, Association for Computing Machinery, p. 179{190.

[2] Bissi, W., Serra Seca Neto, A. G., and Emer, M. C. F. P. The effects of
test driven development on internal quality, external quality and pro-
ductivity : A systematic review. Information and Software Technology 74 (2016),
45 { 54.

[3] Butler, S., Wermelinger, M., and Yu, Y. Investigating naming convention
adherence in java references. In2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME) (2015), pp. 41{50.

[4] Corritore, C. L., and Wiedenbeck, S. Mental representations of expert proce-
dural and object-oriented programmers in a software maintenance task.International
Journal of Human-Computer Studies 50, 1 (1999), 61 { 83.

[5] Cruz, L., Abreu, R., and Lo, D. To the attention of mobile software
developers : guess what, test your app! Empirical Software Engineering 24, 4
(2019), 2438{2468.

[6] Demeyer, S., Ducasse, S., and Nierstrasz, O. Object-oriented reengineering
patterns. Elsevier, 2002.

[7] Ellims, M., Bridges, J., and Ince, D. C. Unit testing in practice. In 15th Inter-
national Symposium on Software Reliability Engineering(2004), pp. 3{13.

[8] Fucci, D., Erdogmus, H., Turhan, B., Oivo, M., and Juristo, N. A dis-
section of the test-driven development process : Does it really matter to
test-�rst or to test-last? IEEE Transactions on Software Engineering 43, 7 (2017),
597{614.

[9] Garcia, B. Mastering Software Testing with JUnit 5: Comprehensive guide to de-
velop high quality Java applications. Packt Publishing Ltd, 2017.

[10] Gopinath, R., Jensen, C., and Groce, A. Mutations : How close are they
to real faults? In 2014 IEEE 25th International Symposium on Software Reliability
Engineering (2014), pp. 189{200.

[11] Gousios, G. The ghtorrent dataset and tool suite. In Proceedings of the 10th Working
Conference on Mining Software Repositories(Piscataway, NJ, USA, 2013), MSR '13,
IEEE Press, pp. 233{236.

[12] Hemmati, H. How e�ective are code coverage criteria? In2015 IEEE International
Conference on Software Quality, Reliability and Security(2015), pp. 151{156.

Test Case Identi�cation in Java OS Projects on GitHub 1027

[13] Hilton, M., Bell, J., and Marinov, D. A large-scale study of test coverage
evolution. In Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering(New York, NY, USA, 2018), ASE 2018, Association for
Computing Machinery, p. 53{63.

[14] Jiang, J., Lo, D., He, J., Xia, X., Kochhar, P. S., and Zhang, L. Why and
how developers fork what from whom in github. Empirical Software Engineering 22,
1 (2017), 547{578.

[15] Just, R., Jalali, D., Inozemtseva, L., Ernst, M. D., Holmes, R., and
Fraser, G. Are mutants a valid substitute for real faults in software testing? In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering (New York, NY, USA, 2014), FSE 2014, Association for
Computing Machinery, p. 654{665.

[16] Kirch, W. , Ed. Pearson's Correlation Coe�cient . Springer Netherlands, Dordrecht,
2008, pp. 1090{1091.

[17] Kochhar, P. S., Lo, D., Lawall, J., and Nagappan, N. Code coverage
and postrelease defects : A large-scale study on open source projects.IEEE
Transactions on Reliability 66, 4 (2017), 1213{1228.

[18] Kochhar, P. S., Thung, F., and Lo, D. Code coverage and test suite
effectiveness : Empirical study with real bugs in large systems. In 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER) (2015), pp. 560{564.

[19] Kochhar, P. S., Thung, F., Nagappan, N., Zimmermann, T., and Lo, D.
Understanding the test automation culture of app developers. In 2015 IEEE 8th
International Conference on Software Testing, Veri�cation and Validation (ICST)
(2015), pp. 1{10.

[20] Kuhn, A., Van Rompaey, B., Haensenberger, L., Nierstrasz, O., Demeyer,
S., Gaelli, M., and Van Leemput, K. Jexample : Exploiting dependencies
between tests to improve defect localization. In Agile Processes in Software En-
gineering and Extreme Programming (Berlin, Heidelberg, 2008), P. Abrahamsson,
R. Baskerville, K. Conboy, B. Fitzgerald, L. Morgan, and X. Wang, Eds., Springer
Berlin Heidelberg, pp. 73{82.

[21] Leitner, P., and Bezemer, C.-P. An exploratory study of the state of practice
of performance testing in java-based open source projects. InProceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering (New York,
NY, USA, 2017), ICPE '17, Association for Computing Machinery, p. 373{384.

[22] Lewis, W. E. Software testing and continuous quality improvement. CRC press,
2017.

[23] Linares-V �asquez, M., Bernal-Cardenas, C., Moran, K., and Poshyvanyk,
D. How do developers test android applications? In2017 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME)(2017), pp. 613{622.

[24] Madeja, M., and Porub •an, J. Tracing Naming Semantics in Unit Tests
of Popular Github Android Projects. In 8th Symposium on Languages, Ap-
plications and Technologies (SLATE 2019) (Dagstuhl, Germany, 2019), R. Ro-
drigues, J. Janousek, L. Ferreira, L. Coheur, F. Batista, and H. G.

1028 M. Madeja, J. Porub•an, M. Ba�c��kov�a, M. Sul��r, J. Juh�ar, S. Chodarev, F. Gurb�a �l

Oliveira, Eds., vol. 74 of OpenAccess Series in Informatics (OASIcs), Schloss
Dagstuhl{Leibniz-Zentrum fuer Informatik, pp. 3 :1{3:13.

[25] Mayer, R. E. The psychology of how novices learn computer programming.ACM
Comput. Surv. 13, 1 (Mar. 1981), 121{141.

[26] Munaiah, N., Kroh, S., Cabrey, C., and Nagappan, M. Curating github for
engineered software projects.Empirical Software Engineering 22, 6 (2017), 3219{
3253.

[27] Nayyar, A. Instant Approach to Software Testing: Principles, Applications, Tech-
niques, and Practices. BPB Publications, 2019.

[28] Peruma, A., Almalki, K., Newman, C. D., Mkaouer, M. W., Ouni, A., and
Palomba, F. On the distribution of test smells in open source android
applications : an exploratory study. In CASCON (2019), pp. 193{202.

[29] Pham, R., Singer, L., Liskin, O., Filho, F. F., and Schneider, K. Creat-
ing a shared understanding of testing culture on a social coding site. In2013 35th
International Conference on Software Engineering (ICSE) (2013), pp. 112{121.

[30] Scalabrino, S., Linares-V �asquez, M., Poshyvanyk, D., and Oliveto, R.
Improving code readability models with textual features. In 2016 IEEE 24th Inter-
national Conference on Program Comprehension (ICPC)(2016), pp. 1{10.

[31] Spadini, D., Palomba, F., Zaidman, A., Bruntink, M., and Bacchelli, A.
On the relation of test smells to software code quality. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME)(2018), pp. 1{12.

[32] Stefan, P., Horky, V., Bulej, L., and Tuma, P. Unit testing performance
in java projects : Are we there yet? In Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering(New York, NY, USA, 2017),
ICPE '17, Association for Computing Machinery, p. 401{412.

[33] Sul ��r, M., Ba �c��kov �a, M., Madeja, M., Chodarev, S., and Juh �ar, J. Large-
scale dataset of local java software build results.Data 5, 3 (2020), 86.

[34] Van Deursen, A., Moonen, L., Van Den Bergh, A., and Kok, G. Refactoring
test code. InProceedings of the 2nd international conference on extreme programming
and exible processes in software engineering (XP)(2001), pp. 92{95.

[35] Zerouali, A., and Mens, T. Analyzing the evolution of testing library usage in
open source java projects. In2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER) (2017), pp. 417{421.

[36] Zhang, Y., Lo, D., Kochhar, P. S., Xia, X., Li, Q., and Sun, J. Detecting sim-
ilar repositories on github. In 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER) (2017), pp. 13{23.

