
applied
sciences

Article

Empirical Study of Test Case and Test Framework Presence in
Public Projects on GitHub

Matej Madeja * , Jaroslav Porubän , Sergej Chodarev , Matúš Sulír and Filip Gurbál’

����������
�������

Citation: Madeja, M.; Porubän, J.;

Chodarev, S.; Sulír, M.; Gurbál’, F.

Empirical Study of Test Case and Test

Framework Presence in Public

Projects at GitHub. Appl. Sci. 2021, 11,

7250. https://doi.org/10.3390/

app11167250

Academic Editor: Vito Conforti

Received: 9 July 2021

Accepted: 4 August 2021

Published: 6 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computers and Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia;
jaroslav.poruban@tuke.sk (J.P.); sergej.chodarev@tuke.sk (S.C.); matus.sulir@tuke.sk (M.S.);
filip.gurbal@tuke.sk (F.G.)
* Correspondence: info@madeja.sk

Abstract: Automated tests are often considered an indicator of project quality. In this paper, we
performed a large analysis of 6.3 M public GitHub projects using Java as the primary programming
language. We created an overview of tests occurrence in publicly available GitHub projects and the
use of test frameworks in them. The results showed that 52% of the projects contain at least one test
case. However, there is a large number of example tests that do not represent relevant production
code testing. It was also found that there is only a poor correlation between the number of the word
“test” in different parts of the project (e.g., file paths, file name, file content, etc.) and the number
of test cases, creation date, date of the last commit, number of commits, or number of watchers.
Testing framework analysis confirmed that JUnit is the most used testing framework with a 48%
share. TestNG, considered the second most popular Java unit testing framework, occurred in only 3%
of the projects.

Keywords: testing culture; code quality; testing framework; GitHub; test case presence

1. Introduction

Automated testing is considered an inevitable part of high-quality software
projects [1]. Tests allow developers to automatically detect bugs in changed code, they can
help them analyze and resolve the defects. The presence of test cases, however, does not
ensure that project is bug-free. Gren and Antinyan [2] even found that there is only a weak
correlation between testing and code quality.

To further analyze the relationships between code quality and the occurrence of tests,
we need to better understand how developers write tests in industrial projects. There are
recommendations of how tests should be written, but we do not know how they are written
in practice. Many researchers have tried to clarify the motivation of writing tests [3–5], the
impact of Test-driven development (TDD) on code quality [6–9], the effectiveness of tests
on defective code [10–12], or the popularity of testing frameworks [13]. However, a manual
analysis of test cases in projects could also be helpful to reveal and understand how tests
are written. In order to perform such an analysis in the future, it is necessary to find out
how many projects use automated tests, using which testing frameworks they are written,
and how the frameworks and libraries are used simultaneously. At the same time, it is
interesting to see the ratio of the word “test” in different parts of the project to the number
of test cases and other project’s metadata, such as number of watchers, number of commits,
etc. This information can be useful in terms of further development of testing tools, using
information from tests during program comprehension as well as mining repositories in
other studies.

It is also interesting to know how many open-source projects contain automated tests
at all. According to Cruz et al. [14], who analyzed 1000 repositories, 39% of projects include
test cases. Kochhar et al. [1] executed a similar study on 20,817 and later on 50,000 projects
with test case presence in 61.65% and 42.66% of repositories, respectively. The first study,

Appl. Sci. 2021, 11, 7250. https://doi.org/10.3390/app11167250 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8197-1962
https://orcid.org/0000-0001-9706-2897
https://orcid.org/0000-0002-9293-0859
https://orcid.org/0000-0003-2221-9225
https://orcid.org/0000-0001-7691-9273
https://doi.org/10.3390/app11167250
https://doi.org/10.3390/app11167250
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11167250
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11167250?type=check_update&version=1

Appl. Sci. 2021, 11, 7250 2 of 22

however, was not conducted on a random set of projects, and the results of other ones
published by Kochhar et al. varied too much, so it is needed to evaluate the test case
presence on a larger sample of independent projects.

In our previous work [15], we had already analyzed the correlation between the
occurrence of the word “test” in names and contents of files and the number of actual test
cases in selected GitHub projects. We were using manual identification of test cases, so we
needed to limit the number of projects. For this reason, we have analyzed only projects
with the highest occurrence of the word “test”. We have found that the Pearson correlation
coefficient r = 0.655 and therefore there is only a weakly significant correlation. Despite
the weak correlation with the number of test cases, we have found that the word “test” is
very closely related to the occurrence of at least one executable test case. This means that
the occurrence of this word in the project may indicate the presence of test cases.

In this work, we extend our analysis of the occurrence of the word “test”. Our long-
term goal is to streamline the program comprehension using the information from tests,
but first, we need to find projects with tests, from which it will be possible to find out what
information is placed in the tests and where. Searching for the string “test” to find test
cases in a project can return code artifacts that are not tests, and we need to eliminate such
cases. At the same time, if there exists a typical number of tests in projects, it might be
helpful to find out why this number is common and whether the results do not include
true negatives. Therefore, we need to manually analyze random and independent projects
to find out in which code artifacts this string is located (e.g., documentation, production
code, testing code, etc.) and how often it indicates a test case. Mentioned issue of detecting
test cases in a code could also be related to the correlation of the number of the word
“test” and other project attributes, such as activity or popularity. This paper answers the
following questions:

RQ 1. Is there a typical number of the word “test” occurrences across a project that is observed in a
large number of projects? If so, what is the reason behind such specific number?

RQ 2. Is occurrence of the word “test” related to the creation date, date of last commit, number of
commits, or number of watchers of a project?

As a part of our previous work, we also developed an automatic identification ap-
proach for test cases with 97% accuracy. This allows us to extend the analysis to all GitHub
projects from May 2019 with Java as a primary language. To find out how many projects
use tests that could be used as possible sources of information about the production code,
we will use the mentioned automatic identification approach in this paper. We need to
investigate how many tests and testing frameworks are used and where developers place
important information useful for program comprehension. Therefore, the aim of this
study is not to analyze how tests change during the project life cycle, but whether they
are present in the projects, how to find the projects that contain tests, and find how tests
describe the production code given the framework used. In this paper, we also answer the
following questions:

RQ 3. What is the ratio of open-source projects that contain at least one test case?

RQ 4. What is the general correlation between the number of occurrences of the word “test” in all
files’ content of a project and the number of actual test cases in the project?

RQ 5. Which test frameworks and libraries are used and how are they combined in projects?

In the following sections, we describe the data gathering process, results, and threats
to validity.

Appl. Sci. 2021, 11, 7250 3 of 22

2. Method

The study was focused on public projects from GitHub (https://github.com/; ac-
cessed on 20 June 2021) that had Java as their most used (primary) programming lan-
guage. To reduce the number of requests for the GitHub API, GHTorrent [16] was used,
which mirrors project metadata from GitHub. We used a collection of 6.3 M projects
from the May 2019 dump (https://ghtorrent.org/downloads.html; accessed on 20 June
2021); mysql-2019-05-01 was downloaded, which is described in detail in our previous
paper [15].

For a high-level overview of the method, highlighting the connections between data
sources, processing techniques, and individual research questions, see Figure 1. To answer
the first two research questions, we have used the raw data obtained in our previous
study—results of searching for the word “test” using GitHub search API. Because of the
limits of the API, only 4.3 M repositories were considered. For other research questions,
the search for the word “test” was no longer performed using the GitHub Search API, but
it was a part of the script following the rules of GitHub search to keep the data consistency
(explained in detail in [15]). Therefore, we were not limited by GitHub API code indexing
for search purposes anymore and we were able to analyze more projects, 6.3 M in total.

GitHub projects with Java as the main language (~6.3M)

GHTorrent metadata
(popularity, commits, activity)

GitHub search API
(~4.3M projects)

Downloaded source code
(~6.3M projects)

Testing framework
import search

Test case
identification

RQ2: relation of
 “test” occurrence

and metadata

RQ1: typical number
of occurrences

RQ4: correlation of
“test” occurrence
and test cases

RQ3: presence of test
cases

RQ5: test framework
usage

Sources:

Processing:

Results:

Search for “test”
(name, path, content)

Search for “test”
(only content)

Figure 1. Study overview.

2.1. Typical Number of “test” Occurrences

We used 6 different datasets with the results of the search for the word “test” using
GitHub API in each project. The datasets are formed based on different search parameters
used. First, we used two types of file filtering and searched: (1) only in Java and Kotlin
files and (2) in all project files. For each approach, the “test” string was searched in: (1) file
content, (2) filename, and (3) file path. As a result, in each dataset, we had the number of
the word “test” in each file of a project.

We used these data to find out if there exists some specific number of the word “test”
occurrences that is very common among the projects (RQ 1). To understand the reasons
for such common numbers, we have performed a manual investigation of 100 randomly
selected projects from each search sample that has this typical number of occurrences.

Random selection was ensured by MySQL rand() (https://dev.mysql.com/doc/
refman/8.0/en/mathematical-functions.html#function_rand; accessed on 20 July 2021)
function. Each repository was downloaded, opened in an Integrated Development Envi-
ronment (IDE), and all files with occurrences were analyzed to find out for what purposes
the word “test” is used. The analyzed files were classified into the following groups:

• Testing code—occurrences in test cases of application.
• Testing helpers—help classes used for testing.
• Example tests—test not written by a developer but automatically generated by an IDE

or a framework as an example.

https://github.com/
https://ghtorrent.org/downloads.html
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_rand
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_rand

Appl. Sci. 2021, 11, 7250 4 of 22

• Configuration—project’s configuration files, e.g., build tool ones (pom.xml, build.gra-
dle, etc.).

• Production code —occurrences in production code, e.g., name of an identifier, produc-
tion package name, etc.

• Documentation—occurrences in readme files, comments, or JavaDoc.
• Other files—e.g., data sources, SQL dumps, images, etc.

This way we tried to identify sources of frequently occurring numbers of the word
“test” in different projects and datasets.

2.2. Correlation between Occurrence of “test” and Project Properties

To answer RQ 2, we created scatter graphs with the number of occurrences of the word
“test” on the Y-axis and the creation date, date of the last commit, number of commits, or
number of watchers of the project on the X-axis. These data were taken from the GHTorrent
dataset. We have also calculated standard Pearson’s correlation coefficient [17] for each
search sample and project parameter. The correlation coefficient was calculated as follows:

r =
∑(x − mx)(y − my)√

∑(x − mx)2 ∑(y − my)2
(1)

where mx is the mean of the vector x (number of occurrences of the word “test”) and my
is the mean of the vector y (creation date, date of the last commit, number of commits, or
number of watchers).

2.3. Number of Test Cases and Test Framework Usage

To answer the next three research questions, we have used the automatic test case
detection script described in our previous paper [15]. The analysis was performed on the
downloaded source code archives of all 6.3 M GitHub project with Java as the primary
language. The analysis process had the following steps:

1. Get project name from GHTorrent.
2. Download ZIP with the source code of the project from GitHub.
3. Run analysis using the proposed script (https://github.com/madeja/test-overview-

in-java/blob/master/ProjectAnalyzer.php; accessed on 20 July 2021).

The process of source code download and analysis takes substantial time, so to process
all the projects we have used 34 parallel processes and we ran them from 22 January to 24
February 2021.

As a result, the script provided us the number of actual test cases present in each file of
a project, and also the presence of import statements for testing frameworks and libraries.
The presence of test cases and their number were used to answer RQ 3. To answer RQ 4,
we compared the data to the number of occurrences of the word “test” in all files content of
a project and used the Pearson’s correlation coefficient.

To answer RQ 5, we searched for import statements of the 29 testing frameworks
and libraries. The list of frameworks and corresponding import paths were based on our
previous work [15], where we analyzed 50 Java testing frameworks and their properties.
For this study, we excluded frameworks without identified import (mostly archived ones
or test generators) or without the obligation to use the word “test”, due to searching only
in files with “test” presence in the content.

https://github.com/madeja/test-overview-in-java/blob/master/ProjectAnalyzer.php
https://github.com/madeja/test-overview-in-java/blob/master/ProjectAnalyzer.php

Appl. Sci. 2021, 11, 7250 5 of 22

3. Results

A total of 340 M classes containing the word “test” in their content were analyzed by
the automated script, in which 1124 M test cases were found. The whole dataset of the
analysis is available at Zenodo (https://doi.org/10.5281/zenodo.4566740; accessed on 20
July 2021) (some data are shared with the dataset (https://doi.org/10.5281/zenodo.456619
8; accessed on 20 July 2021) from our previous paper [15]).

3.1. Typical Number of “test” Occurrences

Figure 2 shows the number of occurrences of the word “test” in all projects analyzed
via the Github API. Zero occurrences were skipped to make the graph more readable. It is
possible to see that in all files content the typical number of occurrences of the word “test”
was 4, in other search types it was 2.

Figure 2. The number of occurrences of the word “test” for all Java primary language projects
at GitHub.

Manual investigation of results of 600 randomly selected projects (100 for each search
type) with typical numbers of “test” occurrences can be seen in Figure 3. In all search
types a high incidence of example tests (58% occurrences of 600 manually analyzed projects),
that are mostly generated by IDE or framework, was observed. They do not test the
application functionality; therefore, they are not considered as real executable tests because
they are not actually executed, e.g., in CI/CD. Example tests mostly occurred in Android
projects with classes ExampleUnitTest, ExampleInstrumentedTest, or ApplicationTest.
For non-Android projects, there were mostly test cases implemented as skeleton methods.

0 20 40 60 80 100
Percentage of occurences

all files' content

all filenames

all files' paths

Java/Kotlin files' content

Java/Kotlin filenames

Java/Kotlin files' paths

W
or

d
"t

es
t"

 p
re

se
nc

e
in

 c
on

te
nt

Testing code
Testing helpers
Example tests
Configuration
Production code
Documentation
Other files

Figure 3. Usage proportion of the word “test” by file type in projects with 4 occurrences for search in
all files content and 2 occurrences in other searches.

https://doi.org/10.5281/zenodo.4566740
https://doi.org/10.5281/zenodo.4566198
https://doi.org/10.5281/zenodo.4566198

Appl. Sci. 2021, 11, 7250 6 of 22

The second most common place of finding the word “test” was the testing code, which
is the main objective we search for. As can be seen, only a small portion of occurrences
represent such tests. This means that the peak values of “test” occurrence are mostly caused
by automatically generated tests and not by actual tests of the production code.

The “test” string was also used in the production code for

• project’s package name,
• identifiers, where “test” denotes “examine” or “validate” something,
• debugging or logging.

Although some occurrences in the production code were used to verify application
functionality, they were intended for manual testing or debugging of the code. As these
were not automated tests, such occurrences were included in the production code group.
Presence in configuration files was high for all files content search due to files such as pom.xml
or gradle.build, where the testing process was mostly configured, e.g., testing directories,
framework, etc. Other places of finding were documentation (e.g., readme files, JavaDoc,
comments), test helpers (e.g., abstract testing class), or other files (data, SQL dumps, images,
dynamically generated content, etc.).

RQ 1 Is there a typical number of the word “test” occurrences across a project that is observed
in a large number of projects? If so, what is the reason behind such specific number?

Yes, the most frequent occurrence of the word “test” is 4 for all files content
search and 2 for filename, path, and java files content search. A manual investigation of
randomly selected repositories showed that 58% of such search results were example
test cases, which are mostly responsible for such typical occurrences in projects. For all
files content search, there was the most occurred combination of two example tests and
two configuration files. Test cases were found in 11% of all results and 9% occurred in
production code.

3.2. Occurrence of “test” and Project Properties

To answer RQ 2, we created scatter graphs according to creation date, date of the last
commit, number of commits, or number of watchers of the project (see Figure 4). Presented
graphs are focused on the occurrences of the word “test” in all java files’ content, because
this method is able to find the most test cases in an unknown project code, regardless
of the framework used. Results of other search types can be found in Appendix A. The
graphs do not show projects over 600 occurrences of the searched term to make them more
readable (loss of 0.1% of all projects). Regression lines included in the graphs can be used to
estimate the number of “test” occurrences based on different project’s properties. Pearson’s
correlation coefficient is calculated in each graph as pearsonr with a p-value to express the
statistical significance of the correlation coefficient.

It can be seen from the graphs that there is no strong correlation between the observed
properties of the project and the number of occurrences of the word “test” in all java
files’ content. Low correlation is mostly caused by a huge portion of projects with zero
occurrences of the searched string. Considering the novelty of projects via creation date,
we see increased incidence in 2015 and mid-2018 (Figure 4a). During these years we see an
increased number of projects with a higher occurrence, i.e., more than 100. At the same
time, considering the date of the last commit, the number of projects with a high number of
“test” occurrences grows with the date of the last commit. This situation is probably related
to the maintenance of the project because from a long-time perspective it is difficult to keep
the project reliable and stable without automated tests. Thus, many newly created projects
do not include tests at all (lack of the word “test” in a project), but the tests are implemented
in the following years of the project life (presence of the word “test” in a project).

Although for the popularity (number of watchers), the highest Pearson’s coefficient of
all 4 observed project properties was reached, the correlation is still very weak. From this
point of view, developers do not generally follow projects that are potentially more reliable

Appl. Sci. 2021, 11, 7250 7 of 22

(more tested). On the other hand, this fact can be related to our previous findings [15] that
many projects with a high presence of the “test” string in the java file content are automat-
ically committed from other Version Control Systems (e.g., Apache Subversion), where
copied directories are used for branching, or they are just copies of other projects without
the “fork” relation. Therefore, such projects are probably not followed by developers.

Observing the number of projects’ commits revealed the fact that projects with
>80,000 commits have a prevalence of zero “test” occurrences. The presence of the searched
term varied in projects with common (lower) commit activity, therefore, it is not possible to
conclude a common behavior of developers.

RQ 2 Is occurrence of the word “test” related to the creation date, date of last commit, number
of commits, or number of watchers of a project?

No strong relation was found between the number of occurrences of the word
“test” in all java files’ content and the mentioned project properties. On the other hand,
we observed that the number of projects with a higher “test” presence grows with the
project’s last commit date. Occurrence related to creation date was higher in 2015 and
mid-2018, but not pointing to any trend or rule.

(a) Creation date (b) Date of the last commit

(c) The number of commits (d) The number of watchers
Figure 4. Correlation between the number of occurrences of the word “test” in all java files’ content
and the project’s life cycle parameters.

3.3. Test Case Presence and Correlation with “test” in File Content

In Figure 5, it is possible to see the number of projects containing test cases in a specific
quantity. Comparing this to Figure 2 we see a very similar course as in the occurrence
of the word “test” in java file content. At the same time, we can notice that there are
peaks in the same places. Example tests were not excluded and were considered relevant
test cases, as it is still impossible to automatically detect example test cases. In order to

Appl. Sci. 2021, 11, 7250 8 of 22

detect example tests, we would need to manually decide if the particular test case verifies
some functionality of production code or not. This process could be automated if we
could identify Unit Under Test (UUT) from a test case, because then we would be able to
distinguish whether a particular UUT is in the production code or not.

Figure 5. The real number of test cases in all GitHub projects with Java as a primary language.

In total 51.57% of all projects included at least one test case. On the other hand,
considering the results of Section 3.1 where example tests consisted of 67% for java files
content, we can estimate that in projects with two or less test cases, only 33% of them are
non-example ones. Therefore, we can calculate the percentage of projects containing at
least one test case without example ones (we only considered example tests of projects with
two or less test cases):

P =
Nreal − Nunreal

Nall
=

3,239,308 − 1193,659 ∗ 0.67
6,280,818

= 38.84% (2)

where:
Nreal—number of projects containing an actual test case;
Nunreal—number of projects with two or less test cases of which all are example ones;
Nall—all analyzed projects.

Of course, this is only an estimate, as even projects with a higher number of test cases
can include also example ones.

RQ 3 What is the ratio of open-source projects that contain at least one test case?

51.57% of 6.3 M analyzed projects included at least one test case. Considering
that probably only 33% of test cases detected in projects with two detected test cases
are not example ones, we estimate that only 38.84% of projects include at least one
non-example test case.

Figure 6 presents the correlation between all occurrences of the word “test” in java files’
content of a project and the detected number of actual test cases in the particular project
by the proposed script. Compared to the correlation in projects with a high incidence of
the word “test” (r = 0.655, see [15]), the presence of test cases is lower, reaching Pearson’s
correlation coefficient of r = 0.0253, meaning a poor correlation. Excluding forked projects,
the correlation was r = 0.0393, so the influence of forks is minimal. The result is probably
caused by the occurrence of irrelevant projects, such as testing ones, homework repositories,
clones, etc.

There is a demand to identify the relevance of projects. Some tools for this task already
exist, e.g., reaper [18], but they are very computationally intensive. Our testing [15] shows
that the mentioned tool is slow to use on a large number of projects; therefore, this tool
was not usable for this study.

Appl. Sci. 2021, 11, 7250 9 of 22

Figure 6. Correlation between the number of the “test” word occurrences in the all java files’ content
of a project and the number of test cases in the particular project in all GitHub projects with Java as a
primary language.

RQ 4 What is the general correlation between the number of occurrences of the word “test” in
all files’ content of a project and the number of actual test cases in the project?

There is a poor correlation due to reached Pearson’s correlation coefficient of
r = 0.0253. The negative impact of forked projects was not confirmed, so the huge
decrease in correlation was probably caused by irrelevant projects.

3.4. Number of Projects Potentially Containing Tests

Discussion in this section is an extension of RQ 4. Despite we found no correlation
between the number of occurrences of the word “test” and the number of test cases, we
decided to analyze the relation of the presence of this word and the presence of test cases.
We know that most Java testing frameworks require the word “test” to implement a test
case [15]. When considering this rule, the presence of this word in the project will in most
cases also indicate the presence of tests. Figure 7 shows a percentage comparison of projects
with non-zero “test” occurrences in files content and test case presence. Remember that data
were collected in 2019 and the year 2019 does not include all projects created/committed,
but only until 30 April 2019.

Appl. Sci. 2021, 11, 7250 10 of 22

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

2018
2019

Year

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 o

f a
ll

pr
oj

ec
ts

 in
 th

e
ye

ar

Containing "test" in file content
Containing test cases

(a) By the year of creation.

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

2018
2019

Year

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 o

f a
ll

pr
oj

ec
ts

 in
 th

e
ye

ar

Containing "test" in file content
Containing test cases

(b) By the year of the last commit.

Figure 7. Year percentage comparison of projects with non-zero “test” occurrences and test cases.

It can be seen in Figure 7a,b, that annually approximately 60–80% projects include
“test” in the files’ content with a stabilized ratio of approximately 75% for the last four years.
When comparing the proportion of projects with the occurrence of the word “test” and
projects involving test cases, the annual difference median is 21.15% by year of creation
and 23.54% by year of the last commit. These numbers mean that annually approximately
22% of projects contain the word “test” in the absence of an executable test case. We can
consider it as a false positive indicator of test case identification using “test” occurrence
in the project. Compared to results presented in Section 3.2, there is no increase of the
searched term occurrences due to the last commit.

3.5. Testing Frameworks Usage

The use of testing frameworks can have a significant impact on the writing of tests.
The number of particular framework imports found across all projects’ java files is shown
in Figure 8. Remember that imports were searched only in files that contained the word
“test”, i.e., with possible usage in a test class. For this reason, imports of some frameworks
were not found, e.g., etlUnit, GrandTestAuto, and BeanTest. The number of imports expresses
how many files (most often java classes) use the given framework. We can notice a huge
prevalence of the JUnit4 + JUnit5 frameworks. (We divided JUnit into two groups due to
different test case notation. JUnit3 uses “test” in the method name, and JUnit4+ uses the
annotation @Test via its in-place binding [19] to the test method (currently only JUnit4 +
JUnit5)). It is followed by Mockito, Spring Testing Framework, Hamcrest, and JUnit3. TestNG
is often considered the second most popular framework, the occurrence of its imports is
the 6th most common. On the other hand, it is necessary to take into account that, e.g.,
Spring Testing Framework is purpose-dependent, Mockito is a part of unit tests, but is not an
equivalent to a full-fledged framework such as JUnit or TestNG.

Appl. Sci. 2021, 11, 7250 11 of 22

Figure 8. The number of found framework imports in all java files (logarithmic scale).

Figure 9 shows how many projects use a particular testing framework. Regardless
of version, JUnit is used in 48% of projects. TestNG as the second most popular Java unit
testing framework has a share of only 3%. In Table 1, percentages of all simultaneously
used frameworks can be seen. Similar amounts of occurrences are grouped by colors
for faster identification of simultaneously used frameworks with similar presence in the
projects. We can notice that a large number of projects are used simultaneously with JUnit3
and JUnit4/JUnit5, probably because the projects were created with JUnit3, and after the
release of JUnit4, the tests were written in a new style. At the same time, Mockito is very
often used with both JUnit versions. It is also interesting to pay attention to frameworks
in which frequent zero percentages occurred. For example, Artos and HavaRunner occur
only with Hamcrest and JUnit. It is clear from this that these two frameworks depend on
Hamcrest which depends on JUnit. Therefore, from Table 1 it is possible to observe how
particular frameworks are interdependent.

A detailed look at all simultaneous usages of the 5 most used frameworks is presented
in Figure 10. JUnit versions were joined under one group because they are part of the same
family. It is important to note that the percentages only take into account the frameworks
shown in the graph, i.e., not with all searched frameworks. It can be seen that JUnit is
mostly used alone, without any other frameworks. Its competitor TestNG, on the other
hand, appeared never alone, but most often together with JUnit. This is probably because
JUnit is used by default and TestNG is added manually by the developer to the project,
without having to completely remove the competing framework. Hamcrest is often used
solely with JUnit or with JUnit + TestNG. The presence of all five frameworks in the project
is more than 1%, which is quite a high proportion compared to other combinations.

Appl. Sci. 2021, 11, 7250 12 of 22

Table 1. Testing frameworks used simultaneously.

junit3 junit4 testng artos arquillian havarunner jexample assertj hamcrest xmlunit cactus cuppa dbunit easyMock groboutils jgiven jmock jmockit
junit4 + junit5 9.59016
testng 1.01206 1.39472
artos 0 0.00008 0
arquillian 0.40252 0.63740 0.23039 0
havarunner 0.00002 0.00008 0 0 0
jexample 0.00014 0.00053 0 0 0 0
assertj 0.94495 3.29287 0.54514 0 0.24464 0 0
hamcrest 4.18828 9.67182 1.01032 0.00003 0.40580 0.00005 0.00008 1.91533
xmlunit 0.27999 0.29350 0.23651 0 0.15430 0 0 0.18731 0.27944
cactus 0.01785 0.01302 0.00158 0 0.00698 0 0 0.00002 0.00695 0
cuppa 0 0.00032 0.00018 0 0 0 0 0.00032 0.00013 0.00013 0
dbunit 0.12417 0.17079 0.01697 0 0.00676 0 0 0.01633 0.11108 0.00347 0.00097 0
easyMock 1.06113 1.32477 0.30343 0 0.17063 0 0 0.20254 0.81690 0.13797 0.00117 0 0.01403
groboutils 0.01184 0.01224 0 0 0 0 0 0.00133 0.00403 0 0 0 0.00006 0.00665
jgiven 0.00174 0.00436 0.00101 0 0.00018 0 0 0.00276 0.00240 0 0 0 0 0 0
jmock 0.30995 0.44509 0.10624 0 0.00900 0 0.00014 0.17348 0.34444 0.00383 0.00088 0 0.01443 0.05858 0 0.00032
jmockit 0.00075 0.00089 0.00045 0 0 0 0 0.00037 0.00080 0 0 0 0 0.00034 0 0 0.00089
jukito 0.14024 0.14900 0.13586 0 0.13534 0 0 0.13955 0.14248 0.13502 0 0 0.00083 0.13610 0 0.00016 0.00054 0
junitee 0.00008 0.00008 0.00005 0 0 0 0 0 0.00002 0 0.00003 0 0 0.00002 0.00002 0 0 0
mockito 4.49015 9.67778 1.18571 0 0.35171 0 0.00006 2.33805 5.59345 0.27960 0.00332 0.00030 0.12530 0.64240 0.00634 0.00211 0.28067 0.00080
mockrunner 0.06369 0.08071 0.01024 0 0.00014 0 0.00002 0.03400 0.05126 0.00005 0.00005 0 0.00102 0.01782 0.00623 0 0.00703 0
needle 0.01547 0.01574 0.01448 0 0.00094 0 0 0.00264 0.01460 0.00016 0 0 0 0.00102 0 0 0 0
openpojo 0.00978 0.02729 0.00900 0 0.00166 0 0 0.00321 0.01622 0.00008 0 0 0.00003 0.00010 0 0 0.00002 0
powermock 1.09964 1.68869 0.30558 0 0.17527 0 0 0.37899 1.12151 0.14797 0.00163 0 0.05199 0.40081 0.00185 0.00059 0.02696 0.00042
springframework 1.81781 9.47724 0.67249 0 0.26236 0 0 1.81246 3.30872 0.24702 0.00692 0 0.12215 0.41259 0.00307 0.00241 0.20013 0.00038

jukito junitee mockito mockrunner needle openpojo powermock
junitee 0
mockito 0.14561 0.00002
mockrunner 0 0 0.06650
needle 0 0 0.01462 0
openpojo 0.00002 0 0.02453 0.00035 0
powermock 0.13564 0.00002 1.55510 0.01794 0.00847 0.01392
springframework 0.13804 0.00002 3.22824 0.03247 0.01441 0.01037 0.52661

Legend of colors:
Occurrence in range (0, 0.0001)
Occurrence in range <0.0001, 0.001)
Occurrence in range <0.001, 0.01)
Occurrence in range <0.01, 0.1)
Occurrence in range <0.1, 1)
Occurrence in range <1, 100>

Note: All numbers in the table are in %.

Appl. Sci. 2021, 11, 7250 13 of 22

Frameworks
junit4 + junit5 - 45%
junit3 - 12%
mockito - 10%
hamcrest - 10%
springframework - 10%
assertj - 3%
testng - 3%
powermock - 2%
easyMock - 1%
arquillian - 0.64742%
jmock - 0.46942%
xmlunit - 0.29402%
dbunit - 0.18084%
jukito - 0.14900%
mockrunner - 0.08365%
openpojo - 0.03370%
cactus - 0.01804%
needle - 0.01574%
groboutils - 0.01280%
jgiven - 0.00436%
jmockit - 0.00089%
jexample - 0.00053%
cuppa - 0.00037%
artos - 0.00011%
havarunner - 0.00008%
beanTest - 0.00000%

Figure 9. The most used Java testing frameworks in projects.

Figure 10. The first 5 simultaneously used testing frameworks.

Appl. Sci. 2021, 11, 7250 14 of 22

RQ 5 Which test frameworks and libraries are used and how are they combined in projects?

The most widely used framework is JUnit, imported in 48% of projects (2.84%
solely JUnit3, 35.53% solely JUnit4 with JUnit5, 9.59% JUnit3 together with JUnit4 and
JUnit5), which is most often combined with Mockito (more than 10% of projects). Spring
Framework tests and Hamcrest, which are also very popular, have a relatively large
usage share too. TestNG, considered the second most popular Java testing framework,
has only 3% share and is almost never used without JUnit, which is a very surprising
result. A detailed overview of simultaneous usage of frameworks is given in Table 1.

4. Threats to Validity

In this section, we will discuss threats to the validity of this study, as suggested by
Wohlin et al. [20].

4.1. Internal Validity

Answering RQ 1 and RQ 2 relied on the GHTorrent databank and GitHub API search
algorithm. For all RQs, only projects with Java as a primary language were selected;
therefore, testing practices out of this scope (e.g., Java used as a minority language) could
have been lost. Our study was limited to projects containing the word “test” in different
places and was depended on third-party frameworks. It is necessary to further investigate
customized testing solutions, that are mostly represented by small Java programs which
test the production code and do not use any official testing framework. The implementation
of such programs is often significantly different and it is difficult to identify test cases. It
must be taken into account that in this study the relevance of the projects was not taken
into account, but all projects were analyzed, i.e., copies, forks, example projects, etc.

4.2. External Validity

To provide generalizable results, we analyzed a huge number of Java projects due to
the popularity of Java, in order to achieve high variability of tests of different developers.
The results can be used as a basis for further development of tools for test development
and code quality improvement. Despite the presented observations, our findings, as is
usual in empirical software engineering, may not be directly generalized to other systems,
particularly to commercial or to the ones implemented in other programming languages.

5. Related Work

An overview of similar studies and their comparison with our study is presented in
Table 2. As can be seen from the table, the main contributions of this paper compared to
related work are the following:

• analysis on the largest sample of 4.3 M projects;
• considering the largest number of 26 unit testing frameworks;
• the finest granularity of the identification of a test case (at the level of the test method);
• platform-independent focus on Java programming language.

In the following paragraphs, we describe related work in more detail.
GitHub is often used for many studies to identify practices in independent projects.

The quality and reliability of a project can be evaluated from several perspectives. In 2013,
Kochhar et al. executed very similar empirical studies [1,21] of the adoption of testing in
open source projects at GitHub, independently of programming language. They found
out that 61% of the analyzed repositories include at least one test case, that projects with
a larger number of developers have more test cases, and that number of test cases has a
weak correlation with the number of bug reporters. We extend their study from 50,000 to
millions of analyzed repositories, but solely focused on projects with Java as a primary
language. At the same time, we search for a big set of testing frameworks and compare
their usage in projects.

Appl. Sci. 2021, 11, 7250 15 of 22

Table 2. The novelty of the study compared to related work.

Paper Data Collection Project Type Source Project Filtering Number of
Analyzed Projects Analysis Level Project Contains

Tests When
Considered Unit

Testing Frameworks
Projects Containing

Unit Tests

Kochhar et al. [1]
semi-automated independent GitHub random projects with

manual review
20.8k

testing class a file contains the
word “test” in filename not considered

61.65%

Kochhar et al. [21] 50k 42.66%

Cruz et al. [14] automated Android F-Droid + Github projects from F-Droid with
code placed at GitHub 1k project

a file contains
import of a testing
framework or it is

configured in a
config file

4 39.00%

Pecorelli et al. [11] semi-automated Android F-Droid + Github projects from F-Droid with
code plased at GitHub 1.8k testing class

a file contains “test”
as prefix or suffix

and observer labels
the class as test

all identified by
manual

investigation
41.00%

Lin et al. [22] automated Android GitHub

1. repository contains one
AndroidManifest.xml 2.

build.gradle contains
“com.android.application”
3. 2 < declared components
in the manifest 4. package

name in an app market

12k method

a file in “test” or
“androidTest”

directories
containing @Test

annotation

3 6.10%

this paper automated Java GitHub all projects with Java as
primary language 4.3M method

a file contains the
word “test” in the
content with a test

method identified by
static analysis [15]

26 51.57%

Appl. Sci. 2021, 11, 7250 16 of 22

There was a similar study by Pecorelli et al. focused on the effectiveness of test cases
on 1780 open-source Android applications [11]. They found that 59% of applications do
not contain any test at all. The rest of the applications had tests with poor quality and very
low effectiveness based on all computed metrics, and they are very likely to miss faults
in production code. Authors claim that there may be a need to define novel indicators to
better quantify the quality of test cases. Spadini et al. found that 71% of production code is
more likely to contain defects when tested by smelly tests (poorly designed tests) and also
it negatively impacts program comprehension [12].

Another study oriented towards Android applications was executed by Lin et al.,
where more than 3.5 million GitHub repositories were analyzed, and they identified more
than 12,000 non-trivial and real-world Android apps [22]. They observed that only 8% of
applications have any automated tests, only 6% unit tests and UI testing is less adopted
than unit testing (4%). They conducted surveys to support their observations and found
that developers tend to follow the same test automation practices across applications and
popular projects are more likely to adopt test automation practices. However, they searched
only projects with JUnit-based testing frameworks such as JUnit, Robolectric, Mockito,
and Espresso.

Beller et al. [23] created a dataset of Travis CI usage in GitHub open-source projects,
where they analyzed more than 1000 projects. They performed a general-purpose analysis
of all build logs, and they also searched for outputs of common testing frameworks, as they
are a common part of the build process. The framework detection is limited by the used
build tools (Maven, Gradle, Ant) and frameworks (JUnit, PowerMock, Mockito, TestNG).
They also gathered test results, i.e., how many tests were passed, failed, errored or skipped,
execution time, etc.

Lemay [24] observed 1746 publicly available Java GitHub projects to infer usage and
usability issues of developers with the Java language. He tried to measure the quality
of programming languages. The study analyzed control flow statements, literal, oper-
ator usage, and null checks. Studying such repository properties can be beneficial for
further language development. In our study, we focus on tests and the possibility of
their identification.

The effect of programming languages on software quality was investigated by Ray et al. [25].
In 729 repositories they used a mixed-methods approach, combining multiple regression
modeling with visualization and text analytics, to study the effect of language features
such as static v.s. dynamic typing, strong v.s. weak typing on software quality. Considering
effects such as team size, project size, and project history, they report that language design
does have a significant, but modest effect on software quality. Strong typing is modestly
better than weak typing, and among functional languages, static typing is also somewhat
better than dynamic typing. They also found that functional languages are better than
procedural ones.

Zerouali and Mens [13] reviewed the use of testing frameworks in 4532 open-source
projects. They studied how frequently specific libraries are used over time and how they
are used simultaneously. They analyzed only 13 testing frameworks, while we analyze
26 ones on a much larger sample of projects.

6. Discussion

The long-term goal of our research is to use information about the semantics and
structure of tests to enrich production code with such information to improve program
comprehension. In this way, software development will be cheaper and more reliable
because a developer who comprehends the code can implement the specified function-
ality faster and with fewer errors. To use this idea, it is necessary to discuss how many
software projects use tests. Because testing frameworks affect the placement of usable
information for such enrichment, we also investigated what frameworks are used and how
they are combined.

Appl. Sci. 2021, 11, 7250 17 of 22

Because in the existing research the percentage of projects containing tests varied too
much (39–62% of the analyzed projects, see [1,14]), in this paper, we executed a study with
the largest dataset of 4.3 M projects for such analysis. To process so many projects, we used
a script for static analysis [15]. Despite the achieved result that 52% of projects contain
tests, we found that many of the test cases are example ones and do not contain actual
information about the production code. These tests are generated, they do not contain
relevant information to enrich the production code (e.g., a test containing assert(true)
has no added value for code comprehension). Therefore, we need to look for a method for
the detection that a test is beneficial for comprehension.

Because the word “test” is often used in testing frameworks, it is assumed that we will
also find tests when searching for this word (see results in [15] with reached correlation
r = 0.655). This method is also often used to search for tests, e.g., searching classes in
the “test” directory or searching for classes containing “test” in the filename. This paper
shows that globally there is a very low correlation between the number of the word “test”
occurrences and the number of test cases in a project. We searched also for correlations
between the number of the word “test” occurrences and creation date, date of the last
commit, number of commits, or number of watchers, which could help search for projects
containing test cases, but we found a very low correlation again, therefore, these approaches
are not usable to reliably estimate the number of tests in a project.

We know from the study what frameworks are used and how they are combined.
This will allow better targeting of tools that help create tests, generate documentation, or
understand code to better target these tools for specific frameworks. For our goal of using
the information from the tests, it will be possible to focus on the most used frameworks
and other frameworks mostly combined with them. This will allow us to use the right
information to help the developer comprehend the testing or production code.

7. Conclusions

In this paper, a study of the presence of test cases and the use of different frameworks
in a huge set of GitHub projects using Java as the primary language was performed. In
total, 6.258 M projects and 340 M of classes containing the word “test” in its content were
analyzed, in which 1124 M test cases were found. Manually, 600 randomly selected projects
containing a typical number of the word “test” occurrences were analyzed in different
parts of the code, in a total of six groups. We calculated a general correlation between
the word “test” in file content and the number of test cases in it. At the same time, we
created an overview of testing frameworks usage, how they are combined and how they
are dependent on each other. We summarize the most interesting findings from our study:

• Manual investigation of randomly selected repositories with a huge number of the
same occurrences of “test” showed that 58% of such search results are example test cases.

• There is no strong relation between the occurrence of the word “test” and creation
date, date of the last commit, number of commits, or number of watchers.

• A total of 51.57% of projects include at least one test case.
• There is a poor correlation between the number of occurrences of the word “test” in

the file content and the number of test cases in such file (r = 0.0253).
• JUnit is used in 48% of projects and is mostly used with Mockito, Spring Testing

Framework, and Hamcrest.
• TestNG, considered the second most popular Java unit testing framework, occurred

only in 3% of projects and was never used without JUnit.

Based on the findings, the following additional contributions are concluded:

• Searching for “test” in file content cannot be directly used to estimate the number of
test cases.

• Test cases are present in more than half of the projects, so mining information from
tests about the production code is promising.

• An overview of testing frameworks usage and ways how they are combined in projects
will allow practitioners and researchers to focus on the most used ones.

Appl. Sci. 2021, 11, 7250 18 of 22

In future research, we will focus on the analysis of example tests and their automatic
detection, as these tests do not really test the production code and, therefore, do not
improve code quality. There is also a need to streamline tools detecting industrial projects
with the possibility of excluding irrelevant ones, such as reaper, which was time-consuming
to use on a large sample of projects (see our experience with this tool in paper [15]). It is
also necessary to evaluate the impact of the presence of automated tests on code quality
in proprietary projects, as the results may be diametrically different compared to open-
source solutions.

Author Contributions: Conceptualization, M.M.; Data curation, M.M.; Formal analysis, M.M.;
Investigation, M.M.; Methodology, M.M., J.P., S.C., M.S., and F.G.; Software, M.M.; Visualization,
M.M.; Writing—original draft, M.M.; Writing—review and editing, M.M., J.P., S.C., M.S., and F.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Project VEGA No. 1/0762/19 Interactive pattern-driven
language development.

Data Availability Statement: Data supporting reported results can be found at https://doi.org/10.5
281/zenodo.4566740 (accessed on 20 July 2021) and partially at https://doi.org/10.5281/zenodo.45
66198 (accessed on 20 July 2021).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A. Additional Graphs of “test” Presence and Project’s Properties

This appendix is an extension of Section 3.2 as a result of deep mining Java projects of
GitHub. We present correlation graphs of creation date, date of the last commit, number of
commits, or number of watchers and:

• “test” string occurrences in file content (all files, Figure A1),
• “test” string occurrences in file path (all files, Figure A2 + solely java files, Figure A3),
• “test” string occurrences in the filename (all files, Figure A4 + solely java files,

Figure A5).

(a) Creation date (b) Date of the last commit

(c) The number of commits (d) The number of watchers
Figure A1. Correlation between the number of occurrences of the word “test” in all files content and project’s life
cycle parameters.

https://doi.org/10.5281/zenodo.4566740
https://doi.org/10.5281/zenodo.4566740
https://doi.org/10.5281/zenodo.4566198
https://doi.org/10.5281/zenodo.4566198

Appl. Sci. 2021, 11, 7250 19 of 22

(a) Creation date (b) Date of the last commit

(c) The number of commits (d) The number of watchers
Figure A2. Correlation between the number of occurrences of the word “test” in all files path and project’s life
cycle parameters.

(a) Creation date (b) Date of the last commit

(c) The number of commits (d) The number of watchers
Figure A3. Correlation between the number of occurrences of the word “test” in java files path and project’s life
cycle parameters.

Appl. Sci. 2021, 11, 7250 20 of 22

(a) Creation date (b) Date of the last commit

(c) The number of commits (d) The number of watchers
Figure A4. Correlation between the number of occurrences of the word “test” in all files filename and project’s life
cycle parameters.

(a) Creation date (b) Date of last commit

(c) The number of commits (d) The number of watchers
Figure A5. Correlation between the number of occurrences of the word “test” in java files filename and project’s life
cycle parameters.

Appl. Sci. 2021, 11, 7250 21 of 22

References
1. Kochhar, P.S.; Bissyandé, T.F.; Lo, D.; Jiang, L. An Empirical Study of Adoption of Software Testing in Open Source Projects.

In Proceedings of the 2013 13th International Conference on Quality Software, Nanjing, China, 29–30 July 2013; pp. 103–112.
[CrossRef]

2. Gren, L.; Antinyan, V. On the relation between unit testing and code quality. In Proceedings of the 2017 43rd Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), Vienna, Austria, 30 August–1 September 2017;
pp. 52–56.

3. Linares-Vásquez, M.; Bernal-Cardenas, C.; Moran, K.; Poshyvanyk, D. How do Developers Test Android Applications?
In Proceedings of the 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME), Shanghai, China,
17–22 September 2017; pp. 613–622.

4. Beller, M.; Gousios, G.; Panichella, A.; Zaidman, A. When, How, and Why Developers (Do Not) Test in Their IDEs. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering; Association for Computing Machinery: New York, NY, USA,
2015; pp. 179–190. [CrossRef]

5. Kochhar, P.S.; Thung, F.; Nagappan, N.; Zimmermann, T.; Lo, D. Understanding the Test Automation Culture of App Developers.
In Proceedings of the 2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST), Graz,
Austria, 13–17 April 2015; pp. 1–10.

6. Fucci, D.; Erdogmus, H.; Turhan, B.; Oivo, M.; Juristo, N. A Dissection of the Test-Driven Development Process: Does It Really
Matter to Test-First or to Test-Last? IEEE Trans. Softw. Eng. 2017, 43, 597–614. [CrossRef]

7. Bissi, W.; Serra Seca Neto, A.G.; Emer, M.C.F.P. The effects of test driven development on internal quality, external quality and
productivity: A systematic review. Inf. Softw. Technol. 2016, 74, 45–54. [CrossRef]

8. Karac, I.; Turhan, B. What Do We (Really) Know about Test-Driven Development? IEEE Softw. 2018, 35, 81–85. [CrossRef]
9. Rafique, Y.; Mišić, V.B. The Effects of Test-Driven Development on External Quality and Productivity: A Meta-Analysis. IEEE

Trans. Softw. Eng. 2013, 39, 835–856. [CrossRef]
10. Petrić, J.; Hall, T.; Bowes, D. How Effectively Is Defective Code Actually Tested? An Analysis of JUnit Tests in Seven Open

Source Systems. In Proceedings of the 14th International Conference on Predictive Models and Data Analytics in Software Engineering;
Association for Computing Machinery: New York, NY, USA, 2018; pp. 42–51. [CrossRef]

11. Pecorelli, F.; Catolino, G.; Ferrucci, F.; De Lucia, A.; Palomba, F. Testing of Mobile Applications in the Wild: A Large-Scale
Empirical Study on Android Apps. In Proceedings of the 28th International Conference on Program Comprehension; Association for
Computing Machinery: New York, NY, USA, 2020; pp. 296–307. [CrossRef]

12. Spadini, D.; Palomba, F.; Zaidman, A.; Bruntink, M.; Bacchelli, A. On the Relation of Test Smells to Software Code Quality.
In Proceedings of the 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME), Madrid, Spain, 23–29
September 2018; pp. 1–12. [CrossRef]

13. Zerouali, A.; Mens, T. Analyzing the evolution of testing library usage in open source Java projects. In Proceedings of the 2017
IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER), Klagenfurt, Austria, 20–24
February 2017; pp. 417–421.

14. Cruz, L.; Abreu, R.; Lo, D. To the attention of mobile software developers: guess what, test your app! Empir. Softw. Eng. 2019,
24, 2438–2468. [CrossRef]

15. Madeja, M.; Porubän, J.; Bačíková, M.; Sulír, M.; Juhár, J.; Chodarev, S.; Gurbál’, F. Automating Test Case Identification in Java
Open Source Projects on GitHub. Comput. Inform. 2021, accepted. Available online: https://arxiv.org/abs/2102.11678 (accessed
on 20 July 2021).

16. Gousios, G. The GHTorrent dataset and tool suite. In Proceedings of the 10th Working Conference on Mining Software Repositories;
IEEE Press: Piscataway, NJ, USA, 2013; pp. 233–236.

17. Kirch, W. (Ed.) Pearson’s Correlation Coefficient. In Encyclopedia of Public Health; Springer: Dordrecht, The Netherlands, 2008;
pp. 1090–1091. [CrossRef]

18. Munaiah, N.; Kroh, S.; Cabrey, C.; Nagappan, M. Curating GitHub for engineered software projects. Empir. Softw. Eng. 2017,
22, 3219–3253. [CrossRef]

19. Nosál’, M.; Sulír, M.; Juhár, J. Source Code Annotations as Formal Languages. In Proceedings of the 2015 Federated Conference
on Computer Science and Information Systems (FedCSIS), Lodz, Poland, 13–16 September 2015; pp. 953–964. [CrossRef]

20. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A. Experimentation in Software Engineering; Springer:
Berlin/Heidelberg, Germany, 2012.

21. Kochhar, P.S.; Bissyandé, T.F.; Lo, D.; Jiang, L. Adoption of Software Testing in Open Source Projects—A Preliminary Study on
50,000 Projects. In Proceedings of the 2013 17th European Conference on Software Maintenance and Reengineering, Genova,
Italy, 5–8 May 2013; pp. 353–356. [CrossRef]

22. Lin, J.W.; Salehnamadi, N.; Malek, S. Test Automation in Open-Source Android Apps: A Large-Scale Empirical Study. In Pro-
ceedings of the 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE), Melbourne, VIC,
Australia, 21–25 September 2020; pp. 1078–1089.

23. Beller, M.; Gousios, G.; Zaidman, A. TravisTorrent: Synthesizing Travis CI and GitHub for Full-Stack Research on Continuous
Integration. In Proceedings of the 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR),
Buenos Aires, Argentina, 20–21 May 2017; pp. 447–450. [CrossRef]

http://doi.org/10.1109/QSIC.2013.57
http://dx.doi.org/10.1145/2786805.2786843
http://dx.doi.org/10.1109/TSE.2016.2616877
http://dx.doi.org/10.1016/j.infsof.2016.02.004
http://dx.doi.org/10.1109/MS.2018.2801554
http://dx.doi.org/10.1109/TSE.2012.28
http://dx.doi.org/10.1145/3273934.3273939
http://dx.doi.org/10.1145/3387904.3389256
http://dx.doi.org/10.1109/ICSME.2018.00010
http://dx.doi.org/10.1007/s10664-019-09701-0
https://arxiv.org/abs/2102.11678
http://dx.doi.org/10.1007/978-1-4020-5614-7_2569
http://dx.doi.org/10.1007/s10664-017-9512-6
http://dx.doi.org/10.15439/2015F173
http://dx.doi.org/10.1109/CSMR.2013.48
http://dx.doi.org/10.1109/MSR.2017.24

Appl. Sci. 2021, 11, 7250 22 of 22

24. Lemay, M.J. Understanding Java Usability by Mining GitHub Repositories. In 9th Workshop on Evaluation and Usability of
Programming Languages and Tools (PLATEAU 2018); OpenAccess Series in Informatics (OASIcs); Barik, T., Sunshine, J., Chasins, S.,
Eds.; Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany, 2019; Volume 67, pp. 2:1–2:9. [CrossRef]

25. Ray, B.; Posnett, D.; Filkov, V.; Devanbu, P. A Large Scale Study of Programming Languages and Code Quality in Github.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering; Association for
Computing Machinery: New York, NY, USA, 2014; pp. 155–165. [CrossRef]

http://dx.doi.org/10.4230/OASIcs.PLATEAU.2018.2
http://dx.doi.org/10.1145/2635868.2635922

	Introduction
	Method
	Typical Number of ``test'' Occurrences
	Correlation between Occurrence of ``test'' and Project Properties
	Number of Test Cases and Test Framework Usage

	Results
	Typical Number of ``test'' Occurrences
	Occurrence of ``test'' and Project Properties
	Test Case Presence and Correlation with ``test'' in File Content
	Number of Projects Potentially Containing Tests
	Testing Frameworks Usage

	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Discussion
	Conclusions
	Additional Graphs of ``test'' Presence and Project’s Properties
	References

